Lezione del 22\11\2001 ore 16:30-18:30
Sono gas elementari, molto semplici, a bassissima densità e in cui gli atomi che li compongono non interagiscono l'uno con l'altro. Una loro caratteristica fondamentale è che seguono rigorosamente le leggi di Boyle e di Gay-Lussac.
Legge di Boyle:
pv=k
Ovvero a temperatura costante, pressione e volume del gas sono inversamente proporzionali.
Prima legge di Gay-Lussac:
Vt=Vo (1+at)
Ovvero la variazione di volume di un gas, prodotta da una variazione di temperatura, a pressione costante, è direttamente proporzionale al volume a 0° C e alla variazione di temperatura, ma è indipendente dalla natura del gas.
Seconda legge di Gay-Lussac:
Pt=Po (1+at)
Ovvero la variazione di pressione di un gas, prodotta da una variazione di temperatura, a volume costante, è direttamente proporzionale alla pressione a 0° C e alla variazione di temperatura, ma è indipendente dalla natura del gas.
Equazione dei gas perfetti per una sola grammo-molecola di gas:
pv=RT
Equazione dei gas perfetti per un numero n di grammo-molecole di gas:
pv=nRT
Sapendo che:"u" è l'energia interna e "h" è l'entalpia, avremo:
e
Sapendo ancora che:
e
Lezione del 22\11\2001 ore 16:30-18:30
Esercizio n°1
In tutti e due i contenitori abbiamo inserito dell'aria,
che in questo caso consideriamo come un gas ideale, ma che in realtà è una miscela
di azoto e di ossigeno.
Sapendo che:
Trovare il valore di e di
Per risolvere l'esercizio applichiamo il primo principio della termodinamica:
Ma
Avremo che:
Sapendo anche che:
e
Posso trovare M dall'equazione di stato dei gas perfetti,sapendo che:
Quindi abbiamo anche:
e
Lezione del 22\11\2001 ore 16:30-18:30
Da qui otteniamo:
Ma è vero anche che:
Quindi:
Ovvero:
Da qui otteniamo:
Per trovare uso la formula:
Quindi:
In questo esercizio si conservano sia la massa che l'energia.
Abbiamo due contenitori in cui abbiamo inserito rispettivamente ossigeno e azoto, sapendo che:
Lezione del 22\11\2001 ore
16:30-18:30
Trovare il valore di e di .
Sappiamo che:
Da qui abbiamo che:
Sappiamo ancora che:
Da qui abbiamo che:
Ora troviamo la concentrazione rispettivamente di ossigeno e di azoto:
Dalla relazione:
Possiamo trovare sia che , infatti:
Lezione del 22\11\2001 ore
16:30-18:30
Per avere , si ricorre alla definizione dei calori specifici:
A questo punto possiamo trovare anche :
Ora troviamo anche :
Ma:
Anche in quest'ultimo esercizio abbiamo inserito dell'aria in un contenitore sottoposto però al calore di un fornello sottostante ad esso.
Lezione del 22\11\2001 ore 16:30-18:30
Sapendo che:
Trovare l'aumento di volume dell'aria e quindi .
Questo esercizio si può svolgere in due modi diversi:
Vediamo il METODO TRADIZIONALE:
partiamo dall'equazione di stato dei gas perfetti e troviamo il volume:
Quindi:
Ma:
Quindi:
Allora avremo che:
Vediamo ora il METODO ENERGETICO:
Ma:
Quindi:
Questo ci mostra che in qualunque modo decidiamo di risolvere il problema, arriviamo allo stesso risultato.