RECORDING CONCERT HALL ACOUSTICS FOR POSTERITY

Angelo Farina ⁽¹⁾ – Regev Ayalon ⁽²⁾

⁽¹⁾ Dipartimento di Ingegneria Industriale, Università di Parma, Via delle Scienze 181/A Parma, 43100 ITALIA

HTTP://pcfarina.eng.unipr.it - mail: farina@unipr.it

⁽²⁾ K.S. Waves Inc., Azrieli Center, Tel Aviv, ISRAEL <u>HTTP://www.waves.com</u> - mail:regev@waves.com

Multichannel Audio - The New Reality 24th AES International Conference June 26 - 28, 2003

Background

- The title of this paper is exactly the same employed by Michael Gerzon in its JAES paper (Vol. 23, Number 7, 1975)
- He first proposed to collect impulse responses measured in famous theatres, with a microphone capable of capturing the complete spatial information
- This paper is consequently basically a tribute to M.Gerzon, who had foreseen most of the modern multichannel audio applications, including impulse response measurements and auralization obtained by convolution.

Goals

- The main goal is to measure an huge collection of impulse response in famous theatres, concert halls, cathedrals, etc.
- These impulse responses have two main uses:
- 1. In case something happens to the original space (remember the case of La Fenice theater) they contain a detailed "acoustical photography" which is preserved for the posterity
- 2. They can be used for studio sound processing, as artificial reverb and surround filters for today's and tomorrow's musical productions

Topics

- Description of the measurement technique
- Analysis of some acoustical parameters of the first theaters already measured
- Description of the processing methods to be employed for transforming the measured data in audible reconstructions of the original spaces
- Description of the usage of the measured data for studio processing and production

Sound propagation in rooms

Measurement process

The desidered result is the linear impulse response of the acoustic propagation h(t). It can be recovered by knowing the test signal x(t) and the measured system output y(t). It is necessary to exclude the effect of the not-linear part K and of the background noise n(t).

Test signal: Log Sine Sweep x(t) is a sine signal, which frequency is variable exponentially with time, starting at f_1 and ending at f_2 .

Deconvolution of Log Sine Sweep

The "time reversal mirror" technique is emplyed: the system's impulse response is obtained by convolving the measured signal y(t) with the time-reversal of the test signal x(-t). As the log sine sweep does not have a "white" spectrum, proper equalization is required

Test Signal x(t)

Inverse Filter z(t)

Test Signal – x(t)

Measured signal - y(t)

The not-linear behaviour of the loudspeaker causes many harmonics to appear

Inverse Filter – z(t)

The deconvolution of the system's impulse response is obtained convolving the measured signal y(t) with the inverse filter z(t) [equalized, time-reversed x(t)] 24th AES International Conference

Result of the deconvolution

The last impulse response is the linear one, the preceding are the harmonics distortion products of various orders

Measurement Setup

- The measurement method incorporates all the known techniques:
 - Binaural
 - B-format (1st order Ambisonics)
 - WFS (Wave Field Synthesis, circular array)
 - ITU 5.1 surround (Williams MMA, OCT, INA, etc.)
 - Binaural Room Scanning
 - M. Poletti high-order virtual microphones
- This measurement setup has been named "Waves2003", as it is being employed for the collection of impulse response to be employed together with the new convolution software being developed by KS Waves ltd.

"Waves2003" Measurement Parameters

Test Signal: pre-equalized sweep

Start Frequency	22 Hz		
End Frequency	22 kHz		
Sweep length	15 s		
Silence between sweeps	10 s		
Type of sweep	LOG		

Deconvolution:

Conv	olve with clipboard			×
- Info Auc	lio Data:	Channels to conv Audio Data	olve Imp.Res.	ОК
960 Imp	00 Hz/Mono/1440000 Samples ulse Besponse:	C Left	C Left	Cancel
960	00 Hz/Mono/1440000 Samples	C Right	C Bight	Help
FF1 419	Size: 4304 Samples	Crosstalk C		Preview
Γ	TimeReverse Impulse Response	Impulse Response is 2x2		bypass
User:	Angelo Farina	 Full autorange 8 	& RemoveDC	
Reg. k	ey:	First Block auto	range Gain (dB); -87.0184

Transducers (sound source #1)

Equalized, omnidirectional sound source:
 Dodechaedron for mid-high frequencies
 Subwoofer

24th AES International Conference

Transducers (sound source #2) Genelec S30D reference studio monitor: Three-ways, active multi-amped, AES/EBU Frequency range 37 Hz – 44 kHz (+/- 3 dB)

Transducers (microphones)

- 3 types of microphones:
 - Binaural dummy head (Neumann KU-100)
 - 2 Cardioids in ORTF placement (Neumann K-140)
 - B-Format 4 channels (Soundfield ST-250)

Other hardware equipment

Rotating Table:Outline ET-1

Computer and sound card:
– Signum Data Futureclient P-IV 1.8 GHz
– Aardvark Pro Q-10 (8 ch., 96 kHz, 24 bits)

Measurement procedure

A single measurement session play backs 36 times the test signal, and simultaneusly record the 8 microphonic channels

Theatres measured

Reverberatiuon Time T20

Uhara Hall, Kobe, Japan

Noh theater, Kobe, Japan

Kirishima Concert Hall, Japan

Kirishima Concert Hall, Japan

Greek Theater in Siracusa

Roman Theater in Taormina

Parma Auditorium, Italy

Rome Auditorium, 700 seats

Rome Auditorium, 1200 seats

Rome Auditorium, 2700 seats

Bergamo's Cathedral, Italy

Teatro Valli, Reggio Emilia, Italy

Acoustical Parameters

- Reverberation Time T_{20} :
- Clarity C₈₀:
- Definition D:

• Center Time T_s:

$$D = \frac{\int_{0}^{50 \text{ms}} p^{2}(\tau) \cdot d\tau}{\int_{0}^{\infty} p^{2}(\tau) \cdot d\tau} \cdot 100$$
$$T_{s} = \frac{\int_{0}^{\infty} \tau \cdot p^{2}(\tau) \cdot d\tau}{\int_{0}^{\infty} p^{2}(\tau) \cdot d\tau}$$

Acoustical Parameters

Strenght:

• IACC:

• LF:

LFC:

 $G = SPL - L_w + 31 \qquad dB$ $\rho(\tau) = \frac{\int_{-\infty}^{\infty} h_d(\tau) \cdot h_s(\tau + t) \cdot d\tau}{\sqrt{\int_{-\infty}^{\infty} h_d^2(\tau) \cdot d\tau \cdot \int_{-\infty}^{\infty} h_s^2(\tau + t) \cdot d\tau}}$

$$LF = \frac{\int_{80ms}^{80ms} h_Y^2(\tau) \cdot d\tau}{\int_{80ms}^{5ms} h_W^2(\tau) \cdot d\tau}$$

$$LFC = \frac{\int_{0}^{80ms} h_{Y}(\tau) \cdot h_{W}(\tau) \cdot d\tau}{\int_{0}^{5ms} h_{W}^{2}(\tau) \cdot d\tau}$$

Analysis of spatial attributes

Ando's Parameters		×
IACC: 0.34427 Tau IACC: 0.0 W IACC: 0.010417	(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)	OK Clipboard
T sub 1.4649 [s] Left	1.4459 [s] Right	

Polar diagrams of IACC and (1-LF)

(1-LF) Auditorium Parma - Sorgente a sx

Auditorium	1-LF	IACC
Parma	0.725	0.266
Roma	0.676	0.344

Auralization by convolution

- The basic method consists in convolution of a dry signal with a set of impulse responses corresponding to the required output format for surround (2 to 24 channels).
- The convolution operation can nowadays be implemented very efficiently on a modern PC through an ancient algorithm (equally-partitioned FFT processing, Stockam 1966).

Auralization types

- Stereo (ORTF on 2 standard loudspeakers at +/- 30°)
- Rotation-tracking reproduction on headphones (Binaural Room Scanning)
- Full 3D Ambisonics 1st order (decoding the B-format signal)
- ITU 5.1 (from different 5-mikes layouts)
- 2D Ambisonics 3rd order (from Mark Poletti's circular array microphone)
- Wave Field Synthesis (from the circular array of Soundfield microphones)
- Hybrid methods (Ambiophonics)

ORTF Stereo

 Playback occurs over a pair of loudspeakers, in the standard configuration at angles of +/- 30°, each being fed by the signal of the corresponding microphone

Binaural (Stereo Dipole)

 Reproduction occurs over 2 loudspeakers angled at +/- 10°, being fed through a "cross-talk cancellation" digital filtering system

Ambisonics 3D 1st order

 Reproduction occurs over an array of 8-24 loudspeakers, through an Ambisonics decoder

ITU 5.1 surround

Williams MMA

Schematic of the setup C : Cardioid, 0° L, R : Cardioid, $\pm 40^{\circ}$ LS, RS : Cardioid, $\pm 120^{\circ}$

INA-5

Schematic of the setup C : Cardioid, 0° L, R : Cardioid, $\pm 90^{\circ}$ LS, RS : Cardioid, $\pm 150^{\circ}$

ITU 5.1 surround

😃 Visual V	irtual Microphone			X
		Mactor		
Input File	C:\Users\Farina\Lavori\Waves\Auditorium-Parma\IR-Soundfield-WY-LeftSpkr.wav	In nonor	Done	
	32 bits, 96000 Hz, 1 four channel file 🗧 Auto Play	1	<u>A</u> bout	
Output File	C:\Users\Farina\Lavori\Waves\Auditorium-Parma\ces		<u>S</u> ave	
	Output Configuration 🔽 Real Time Output 🦳 Multiple Mono Files		Load	
Play	/ Stop Loop			
Elev	Azi Width Dir Gain -70.0 90.0 1.3 -0.0	Number of ou	itputs	
-		Current Outpu	t 5.1	
		🔲 Link Pairs	irectivities	

Virtual high-order microphones (M. Poletti)

One of the two ORTE cardioid is employed, which samples 36 positions along a 100 mm-radius circumference

From these 36 impulse responses it is possible to derive the response of cylindrical harmonics microphones (2D Ambisonics) up to 5th order.

Wave Field Synthesis (WFS)

Flow diagram of the process

Hybrid methods (Ambiophonics)

Ambiophonics 3D (10 loudspeakers):

Conclusions

- Main advantages of the new measurement method "Waves 2003":
 - Almost all previously known measurement techniques are incorporated in a single, coherent approach
 - The spatial informations are accurately sampled, making it possible to store, analyze and preserve these "3D acoustical photographies" of existing musical spaces for the posterity
 - The impulse response are stored in many different formats, allowing for their usage for surround productions with today technlogies (ITU 5.1, 1st order Ambisonics) and future, more advanced methods (high order Ambisonics, WFS, Ambiophonics)