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Abstract—The usage of Complete Volterra Kernels for 

emulating the nonlinear behavior of sound systems has been 

investigated for decades. Due to the computational load, the 

real-time implementation is typically limited to second order 

distortion and not feasible for higher orders. This is usually 

unsatisfactory for audio systems in which the disturbing 

distortions occur mostly at orders three and five. The same 

authors of this work already solved the problem with the 

Diagonal Volterra Kernels technique, which allowed to model 

arbitrarily high distortion orders. The estimation of the 

coefficients was obtained by exciting the system with an 

Exponential Sine Sweep signal. However, the result was often 

suboptimal since the signal reproduced by the sound system is 

usually different from a sinusoid. In this paper, a new method 

for estimating the Diagonal Volterra Kernels coefficients is 

proposed, by employing any music, noise or speech signal being 

played by a sound system in real-time. Multiple Least Mean 

Square algorithms are used to estimate the coefficients up to the 

5th distortion order, thus allowing to emulate the nonlinearities 

of a typical audio system. 
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I. INTRODUCTION 

The assessment of the nonlinear behavior of loudspeakers 
and other components of a sound system has always been of 
primary importance [1]–[7], both as a criterion for evaluating 
the sound degradation and for faithfully emulating the device 
under test (DUT), which can be also a music instrument [8] or 
even a room [9]. Among the various approaches, the one based 
on a Complete Volterra Kernel (CVK) model [10] proved 
good results. However, it entails a very hard computational 
load: being L the number of taps required for modeling the 
memory of the system and N the considered distortion order, 
the result is a hyper-cubic multidimensional matrix having N 
dimensions, each of them of length equal to L. The 
computational load quickly becomes too high for performing 
real-time convolution of an audio signal with distortion orders 
higher than two. 

The problem has been solved with the introduction of 
Diagonal Volterra Kernels (DVK) [11]. This allows for 
modelling arbitrarily high distortion orders, represented by 
unidimensional vectors with L coefficients, instead of the 
previously described hyper-dimensional matrices. The 

technique of exciting the system with an Exponential Sine 
Sweep (ESS) [12] gained great success for the measurement 
of the linear response as well as the high distortion orders of 
the sound systems, which can be used to feed a DVK model. 
Such technique was subsequently improved with the 
introduction of a synchronized sine sweep [13] and a phase-
correction applied in post-processing [14]. 

The DVK approach with ESS excitation is a realistic and 
efficient model of the harmonic distortion content when the 
DUT is stimulated by signals having marked tonal 
components, as the pure tone traditionally employed for 
measuring the Total Harmonic Distortion (THD). However, 
real sound systems are usually employed with signals very 
different from a pure tone, such as music but also broadband 
noise, e.g., in the case of Active Noise Control (ANC) systems 
installed on modern cars [15]. Under these conditions, 
multiple nonlinearities are stimulated and the DVK model 
obtained with the ESS technique is unable to adequately 
describe them, since it was estimated for sinusoids only.  

In this work, a new, more reliable method for estimating 
the DVK coefficients is presented. It makes use of multiple 
Least Mean Square (LMS) algorithms [16] and the real signals 
played by the sound system, rather than a sinusoidal test 
signal. The method can be employed for characterizing the 
nonlinear behavior of several sound devices during normal 
operation such as loudspeakers, guitar distortions, amplifiers, 
or electrodynamic shakers. The effectiveness of the presented 
model is proved in two experimental measurements 
performed on a laptop loudspeaker and a resonance speaker. 
The paper is organized as follows: Section II describes the 
proposed method, Section III presents the experimental 
verification, and conclusions are summarized in Section IV. 

II. REAL-TIME MULTIPLE LMS MODEL 

The reference model for this work was proposed in [17]. 
The approach employs an LMS algorithm fed with the input 
signal 𝑥  to estimate the output signal 𝑦  of the system. The 
residual error e is obtained as: 

𝑒(𝑛) = 𝑑(𝑛) − 𝑤𝑇(𝑛)𝑥(𝑛)                                           (1) 

where 𝑑(𝑛) is the input signal 𝑥(𝑛) filtered by the acoustic 
transfer path, 𝑤(𝑛) is the adaptive filter, T denotes transpose 
and n is the time index. When the algorithm converges, the 
following relation ideally holds: 



 

 

𝑦(𝑛) = 𝑤𝑇(𝑛)𝑥(𝑛)                                                        (2) 

thus, resulting in 𝑒(𝑛) = 0 . The adaptive filter 𝑤(𝑛)  is a 
Finite Impulse Response (FIR) filter of 𝐿  samples length, 
updated at each sample n, as follows: 

𝑤(𝑛 + 1) = 𝑤(𝑛) − 𝜇𝑥(𝑛)𝑒(𝑛)                                   (3) 

where 𝜇  is the convergence coefficient (or step-size). 
However, in real systems only the estimation of the linear 
response 𝑦′ of the system is obtained, and the residual error 𝑒, 
containing nonlinearities and noise, is always 𝑒(𝑛) ≠ 0 . 
Instead of employing just one LMS for estimating the linear 
response, the coefficients of the DVK model are estimated 
with a number 𝑁 of LMS, one for each kernel. In this way, the 
residual nonlinear signal 𝑒 is assessed with a series of LMS 
algorithms in cascade, each fed with the input signal raised to 
the power N of the corresponding distortion order. 

A Single-Input Single-Output (SISO) implementation of 
the model was developed in Simulink environment (Fig. 1). 
However, such configuration can be extended to any number 
of input and output channels, hence a Multiple-Input Multiple-
Output (MIMO) configuration is also possible. It was opted to 
use the Normalized LMS algorithm [16], which adjusts the 
convergence coefficient 𝜇 by weighting it in proportion to the 
reference signal power, as: 

 𝜇 =  
𝛽

𝑥′𝑇
(𝑛)𝑥′(𝑛)

                                                                 (4) 

where 𝑛 is the time index, 𝑥 is the input reference signal, T 
denotes the transpose, and 𝛽 is a constant between 0 and 2. 

The system being analyzed is supposed to produce 
nonlinear harmonic distortions mainly at orders three and five, 
with negligible distortion at even orders. Hence, the target is 
to estimate three Diagonal Volterra Kernels as Impulse 
Responses (IR), at order one (linear IR), three, and five. A first 
LMS, fed with 𝑥, estimates the linear response of the system 
and provides a residual error 𝑒. A second LMS, fed with x3, 
provides the output signal 𝑦′′ that estimates the residual error 
𝑒 of the linear LMS. By subtracting the output of this block, 
𝑦′′, from the residual error signal 𝑒, a second residual signal 
𝑒′ is obtained, which contains the information not described 
by the linear and the cubic models. The third LMS, fed with 
x5, aims to further reduce the residual signal 𝑒′, providing as 
output 𝑦′′′. Hence, a new residual error signal can be obtained 
by subtracting the output signal of the last LMS from the 
previous residual error signal, and additional LMS blocks 
could be added to estimate them. Therefore, the approach can 
be extended to any desired order. In the present work, it was 
opted to limit the number of LMS to three, since the 3rd and 
5th nonlinear distortion orders are usually the most relevant in 
real audio systems. 

One can note the model is provided with a time-domain 
scope for each LMS showing the real-time waveform of each 
kernel. An additional time-domain scope and an output block 
allow see and store on disk in real-time the output system 
signal 𝑦 , the linear estimation signal 𝑦′ , the nonlinear 
distortion estimation signals 𝑦′′ (3rd order) and 𝑦′′′ (5th order), 
and the residual errors signals 𝑒, 𝑒′, 𝑒′′. 

 
Fig. 1: Simulink model for DVK coefficients estimation with linear response 

and distortion orders 3 and 5. 

III. EXPERIMENTAL VERIFICATION 

This section describes the experimental measurements 
performed to assess the effectiveness of the proposed model, 
by using a laptop audio system and a resonance shaker.  

A. Measurement setup 

The Matlab/Simulink model was configured to use the 
integrated sound card of the laptop being employed to run it, 
interfaced with Simulink through the Windows DirectSound 
driver, operating at 48 kHz, 16 bits with a buffer size S=1024 
samples. The three LMS blocks have been set for storing 
filters of length 𝐿 = 512 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. Each of them is provided 
with a constant block to define the step-size of the algorithm: 
𝜇 = 0.03 for the linear one, 𝜇 = 0.02 for the 3rd distortion 
order, and 𝜇 = 0.01 for the 5th distortion order.  

The model is provided with a tunable delay block (Fig. 2). 
It is required to compensate the latency of the system, which 
is the sum of two components: 

- Internal delay, given by the sound card and the software. 

- Acoustic path delay, given by the time-of-flight of the 
sound wave from the source (e.g., a loudspeaker) to the 
receiver (e.g., a microphone).  

 
Fig. 2: Delay compensation block. 

The delay is expressed in samples and must be adjusted so 
that the time domain response of the system under test falls 
within the LMS filters of L samples length. In Fig. 3, the linear 
estimation performed with a LMS algorithm of the integrated 
sound system of a laptop is shown in time domain, after 
having applied a correct delay compensation.  



 

 

 
Fig. 3: Linear estimation performed by a LMS algorithm with correct delay 

compensation. 

Regarding the test signals, each experiment was repeated 
twice. First, the ESS excitation technique was used, hence a 
10 s sine sweep from 20 Hz to 20 kHz, with 0.1 s of fade-in 
and fade-out, was directly played through the system. This can 
be done with any Digital Audio Workstation (DAW) software 
that allows to synchronously play and record the test signal 
through the sound system. The recorded signal is then 
convolved with the associated inverse filter, namely the 
inverse sweep, to get the time domain IR. The ESS technique 
allows for identifying the linear response and the harmonic 
distortion components of the system in time domain, which 
allow for computing the DVK using the method first described 
in [11], providing at the same time a significant increase of the 
Signal to Noise Ratio (SNR), up to 70 dB. In Fig. 4, one can 
observe the linear response and the 3rd and 5th order distortion 
components obtained with the traditional ESS technique. 

 
Fig. 4: Time domain IR of a sound system obtained with ESS. 

The excitation signal employed to feed the real-time 
Simulink model was a white noise of 120 s length to ensure 
the perfect convergence of the system, which in any case was 
accomplished after a few seconds, as it can be observed in Fig. 
5. 

 
Fig. 5: Time required for the real-time DVK model to converge for the linear, 

3rd order, and 5th order estimation. 

B. Results for the Integrated Sound System of a Laptop 

In the first experiment, one loudspeaker (left) and one 
microphone (left) of the integrated sound system of a laptop 
were used to play and record the test signal. First, the ESS 
technique was employed, and then the Simulink model was 
used to estimate the DVK coefficients. The real-time DVK 
model was processed twice, by enabling only the linear part, 
and then by also including the 3rd and 5th distortion orders. 
Results can be seen in Fig. 6 and Fig. 7, respectively, in terms 
of Sound Pressure Level (SPL) spectra. The spectra were 
calculated by averaging multiple Fast Fourier Transform 
(FFT) blocks, having an FFT size of 214 samples each, 
overlapped by 75% with a Hann windowing. The following 
spectra are shown: 

- Output signal recorded by the microphone (solid line). 
- Estimated signal with LMS (dotted line). Only linear part 

and including 3rd and 5th distortion orders in Fig. 6 and Fig. 
7, respectively. 

The residual error is significant when the linear part only 
is estimated, particularly towards higher frequencies. Instead, 
the estimation improves in the entire frequency range after 
activating also the second and the third LMS blocks to 
estimate the residual error of the linear part. 

 
Fig. 6: Spectra of output signal and estimated signal with linear LMS only 

when playing a white noise through internal loudspeaker. FFT parameters: 

size of 214 samples, Hann windowing, 75% overlap. 

 
Fig. 7: Spectra of output signal and estimated signal with linear, 3rd order, 

and 5th order LMS when playing a white noise through internal loudspeaker. 

FFT parameters: size of 214 samples, Hann windowing, 75% overlap. 

Eventually, the ESS and the real-time LMS modeling 
techniques have been compared too, in terms of linear 
response estimation (SPL spectra in Fig. 8), 3rd distortion 
order estimation (SPL spectra in Fig. 9), and 5th distortion 
order estimation (SPL spectra in Fig. 10). Results are 
summarized in Table I. One can note the ESS provided similar 
performance with respect to the real-time LMS model when 



 

 

estimating the linear response, except toward high 
frequencies, which causes an average loss of about 1.6 dB. 
Conversely, the new real-time LMS model provided 
significative better performances, with an improvement of 
about 8.8 dB and 4.5 dB observed at 3rd and 5th orders, 
respectively. As can be calculated with the Root Mean Square 
(RMS) values reported in Table I, the total error including 3rd 
and 5th distortion orders is reduced by 26.9% with respect to 
the linear only estimation when the real-time LMS technique 
is employed, and only by 13.1% when the ESS technique is 
employed. In conclusion, the LMS model allowed to reduce 
the residual error of the DVK estimation by 34.8% with 
respect to the ESS technique. 

TABLE I. AVERAGE SPL AND SOUND PRESSURE OF EACH DISTORTION 

ORDER ESTIMATION FOR ESS AND LMS MODELS 

Distortion 
order 

ESS 
[dB] 

ESS 
[Pa RMS] 

LMS 
[dB] 

LMS 
[Pa RMS] 

1st (linear) 72.1 0.0805 73.7 0.0968 

3rd 51.7 0.0077 60.5 0.0212 

5th 43.2 0.0029 47.7 0.0049 

 

 
Fig. 8: Spectra of the linear DVK estimated with traditional ESS and the new 

real-time LMS model. FFT parameters: size of 214 samples, Hann 

windowing, 75% overlap. 

 
Fig. 9: Spectra of the 3rd order DVK estimated with traditional ESS and the 

new real-time LMS model. FFT parameters: size of 214 samples, Hann 

windowing, 75% overlap. 

 
Fig. 10: Spectra of the 5th order DVK estimated with traditional ESS and the 

new real-time LMS model. FFT parameters: size of 214 samples, Hann 

windowing, 75% overlap. 

C. Result for a Resonance Speaker 

In the second experiment, the same laptop with integrated 
sound card and one microphone was used, but the integrated 
loudspeaker was replaced with an external resonance speaker, 
namely a shaker placed on a wooden table. Also in this case, 
both traditional ESS technique and the new real-time DVK 
model were employed. Fig. 11 shows the result for the latter 
approach with linear estimation only, while Fig. 12 is obtained 
by including the 3rd and the 5th distortion orders estimation too. 

 
Fig. 11: Spectra of output signal and estimated signal with linear LMS only 

when playing a white noise through internal loudspeaker. FFT parameters: 

size of 214 samples, Hann windowing, 75% overlap. 

 
Fig. 12: Spectra of output signal and estimated signal with linear, 3rd order, 

and 5th order LMS when playing a white noise through internal loudspeaker. 

FFT parameters: size of 214 samples, Hann windowing, 75% overlap. 

Eventually, the ESS and the real-time LMS model were 
compared, in terms of linear response estimation (SPL spectra 
in Fig. 13), 3rd distortion order estimation (SPL spectra in Fig. 
14), and 5th distortion order estimation (SPL spectra in Fig. 
15). Results are summarized in Table II. Also in this case, the 
ESS provided acceptable performance when modelling the 



 

 

linear part only (about 1.3 dB difference), with a performance 
reduction towards higher frequencies. The real-time LMS 
model provided a significative advantage in the estimation of 
the higher distortion orders, with an improvement of about 9.1 
dB and 10.6 dB observed at 3rd and 5th orders, respectively. As 
can be calculated with the RMS values reported in Table II, 
the total error including 3rd and 5th distortion orders is reduced 
by 36.9% with respect to the linear only estimation when the 
real-time LMS technique is employed, and only by 14.3% 
when the ESS technique is employed. In conclusion, the LMS 
model allowed to reduce the residual error of the DVK 
estimation by 39.1% with respect to the ESS technique. 

TABLE II. AVERAGE SPL AND SOUND PRESSURE OF EACH DISTORTION 

ORDER ESTIMATION FOR ESS AND LMS MODELS 

Distortion 
order 

ESS 
[dB] 

ESS 
[Pa RMS] 

LMS 
[dB] 

LMS 
[Pa RMS] 

1st (linear) 77.9 0.1570 79.2 0.1824 

3rd 58.3 0.0164 67.4 0.0469 

5th 49.6 0.0060 60.2 0.0205 

 

 
Fig. 13: Spectra of the linear DVK estimated with traditional ESS and the 

new real-time LMS model. FFT parameters: size of 214 samples, Hann 

windowing, 75% overlap. 

 
Fig. 14: Spectra of the 3rd order DVK estimated with traditional ESS and the 

new real-time LMS model. FFT parameters: size of 214 samples, Hann 

windowing, 75% overlap. 

 

 
Fig. 15: Spectra of the 5th order DVK estimated with traditional ESS and the 
new real-time LMS model. FFT parameters: size of 214 samples, Hann 

windowing, 75% overlap. 

IV. CONCLUSIONS 

A model making use of multiple Least Mean Square 
algorithms has been proposed for estimating in real-time the 
Diagonal Volterra Kernel coefficients including high 
distortion orders. A Simulink implementation of the model 
was presented, in a single-input single-output configuration 
for including 3rd and 5th distortion orders estimation. The 
presented model is scalable to a greater number of LMS 
blocks including higher distortion orders and to multiple-input 
multiple-output configurations, to operate with more than one 
source and more than one receiver at the same time. 

Two experimental measurements were presented, one 
performed with the integrated sound system of a laptop 
computer, and one with a commercial resonance speaker. 
They both gave evidence that the proposed solution can 
significantly reduce the residual error, hence providing a 
better description of the nonlinearities of the system under 
test. The new method was compared with the traditional ESS 
excitation technique. It employs excitation signals more like 
those played by the device during real working operation (e.g., 
wide spectrum signals like human voice and music). In both 
experiments, it provided better performance with respect to 
the traditional one, confirming the initial hypothesis that the 
Volterra coefficients estimation is heavily affected by the test 
signal. Hence, this new technique provides a significative 
advancement in the emulation of the nonlinear behaviors of 
any audio system. 
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