
 

 

Audio Engineering Society 

Convention Paper 
 

Presented at the International Conference on Audio for Virtual  
and Augmented Reality, 2018 August 20–22, Redmond, WA, USA 

This conference paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed by at 
least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This conference paper has been 
reproduced from the author’s advance manuscript without editing, corrections, or consideration by the Review Board. The 
AES takes no responsibility for the contents. This paper is available in the AES E-Library (http://www.aes.org/e-lib), all rights 
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the 
Audio Engineering Society. 
 

 

Individualized HRTF for playing VR videos with Ambisonics 
spatial audio on HMDs 

Marco Binelli1, Daniel Pinardi1, Tiziano Nili2 and Angelo Farina1 

1 University of Parma, Dipartimento di Ingegneria e Architettura, Parco Area delle Scienze 181/A, 43124, Parma, ITALY 
2 ASK Industries, Reggio Emilia, ITALY 

Correspondence should be addressed to Angelo Farina (farina@unipr.it) 

ABSTRACT 
Current audio/video head-mounted rendering systems for virtual and augmented reality rely on a binaural approach 
combined with Ambisonics technology. These head-tracking systems employ generic HRTFs commonly measured 
with a dummy head in anechoic room. In this paper, we describe a new solution that has been designed to play 
360 video files with spatial audio, developed for desktop and portable platforms and built from existing open 
source software. The HRTF sets can be loaded from a standard audio file chosen in an existing database or from 
an ad-hoc measurement. The capability to switch multiple HRTF sets while playing files has been added.

1 Introduction 
The demand and interest for Augmented/Virtual 

Reality applications is growing quickly and 
worldwide: videogames is probably the most known, 
but also immersive 3D Audio Broadcast Streams of 
Live Performances [1], 3D-Audio in a Multi-Modal 
Teleoperation Platform for Remote Driving / 
Supervision [2] or Virtual Reality for Subjective 
Assessment of Sound Quality in Cars [3]. 

The number of enthusiasts and professional users is 
constantly increasing, thanks to the drop of prices and 
to the birth of simple, portable solutions. In this 
scenario, the key for success is to grant for everyone 
the same immersive and surprising experience, 
independently on the fact that the listener’s head is 
more or less symmetrical or more or less similar to 
the dummy head employed for deriving the Spherical 
Harmonics to Binaural (SH2BIN) filter matrix 

employed for binaural rendering over headphones 
with head-tracking. 

One of the most important aspects for attaining this 
target is to provide an experience as uniform as 
possible, both from visual and aural point of view. 
Two aspects in particular affect the quality of aural 
perception: localization capability and naturalness.  

Already existing solutions are based on two sets of 
HRTFs, both measured with the dummy head 
Neumann KU100: one is the so-called “Thrive 
Audio” and the other is the “SADIE” [4], and both 
have been adopted by Google. The Thrive set was 
embedded in Jump Inspector, the first player capable 
of supporting Ambisonics 3rd order and, for this 
reason, adopted as target by other researches about 
Virtual Reality playback. Recently Google 
discontinued support for Jump Inspector and released, 
as open source, the new “Resonance Audio” library, 

 

http://www.aes.org/e-lib)


Binelli et al Individualized HRTF for playing VR videos with Ambisonics spatial audio on HMDs 

 

AES Conference on Audio for Virtual and Augmented Reality, Redmond, WA, USA,  
August 20–22, 2018 

Page 2 of 10 

in which binaural rendering of spatial audio is based 
on the SADIE HRTF set. 

Nevertheless, other HRTF filter sets are available 
nowadays:  human HRTF databases [5], fast 
personalized measurements in anechoic conditions, 
individual HRTF modelling [6] based on FEM/BEM 
simulations. Each of these methods have pros and 
cons, but in general they are all improvements over 
the current state of the art, as a single, standardized 
dummy head cannot grant to everyone the same 
localization capability, which is highly affected by 
head’s dimensions and shape.  

To perform a scientific investigation, a tool for 
testing and comparing those different approaches is 
required. A first attempt for testing different HRTF 
sets has been provided by [7], whereas the work 
presented here aims to build a ready-to-use 
application for comparing HRTF sets playing 360 
degree audio/video files.  
 
 
2 Development background 

Rendering of spatial audio content in AR/VR/MR 
environments is possible with two different 
approaches. In the first one, a number of “sound 
objects” are placed in the 3D scene and the sound 
emitted by each object is binaurally rendered by 
convolving the mono signal with the HRIR (the time 
domain equivalent of an HRTF) of the corresponding 
position. This requires the availability of a huge set of 
HRIRs, measured with hundreds of source positions 
scattered uniformly on the spherical surface. If few 
measurements are available, a proper interpolation 
algorithm is needed for making the head-tracking 
system to be sensitive to small head or sound objects 
movements. 

The second method is Ambisonics-based [8]. The 
whole acoustical scene is first encoded in a single 
multichannel soundtrack containing a number of 
channels dictated by the maximum order of the 
spherical harmonics expansion. The minimum 
requirement for spatial reproduction of a 3D sound 
field is 1st order Ambisonics, corresponding to a 4-
channels soundtrack, but for more accurate spatial 
rendering typically an Ambisonics order equal to 3 is 
required, resulting in a 16-channels soundtrack. In 
this case the rendering is performed decoding the 
Ambisonics signal to a set of virtual speakers and 

from them to the ears using HRTFs. Thanks to the 
mathematical properties of spherical harmonics, it 
becomes computationally very efficient to perform 3-
axes rotations on the Ambisonics soundtrack, before 
decoding, to achieve head-tracking. This means that 
binaural rendering is obtained simply convolving the 
4 or 16 Ambisonics channels (Spherical Harmonics) 
by a static filter matrix of 4-by-2 or 16-by-2 FIR 
filters. Our work deals with this second approach, as 
in such method a reduced set of directions needs to be 
measured or simulated for getting this individualized 
SH2BIN filter matrix and the computational load is 
significantly smaller than with the sound objects 
method. 

Many solutions are already available on the market, 
but for our purposes, we opted for open source 
software. Two solutions have been employed for this 
work: the first is a modified version of Vive Cinema, 
a 360 video player by HTC, working on a PC 
equipped with top-quality visors; the second is a 
brand new application for standalone systems 
(Samsung Gear VR, Oculus Go, etc.) using 
Resonance Audio, a library released by Google, 
available for many development platform, such as 
Unity or Unreal Engine. 

Both solutions use a mid/side convolution scheme 
for reducing computational load. This means that a 
mid-signal is computed convolving left HRIRs with 
the symmetrical Spherical Harmonics (SH), while the 
side-signal is obtained convolving the asymmetrical 
SH. The left ear signal is than mid+side, while the 
right ear is mid-side (Figure 1). This kind of 
processing relies on the assumption that the HRTFs 
are perfectly symmetrical, that is plausible only for 
some people. 

 

Figure 1: mid/side stereo (top) versus true stereo 
(bottom) Spherical Harmonics to Binaural rendering. 

SH-to-mid 
convolution 

L/R 
symmetrical 
harmonics 
L/R NOT  
symmetrical 
harmonics 

+ Left 

- Right 

B-format Left 

Right 

MID-SIDE 
symmetrical 

TRUE STEREO 
can be 
asymmetrical 

B-format 

SH-to-left 
convolution 

SH-to-side 
convolution 

SH-to-right 
convolution 



Binelli et al Individualized HRTF for playing VR videos with Ambisonics spatial audio on HMDs 

 

AES Conference on Audio for Virtual and Augmented Reality, Redmond, WA, USA,  
August 20–22, 2018 

Page 3 of 10 

The main goal of this work is providing two 
software solutions for testing and comparing 
individualized HRTF sets obtained with different 
methods.  

For testing our new apps, instead of relying solely 
on available sets of dummy or human heads, we 
preferred to also develop our own solution for fast 
measurements of SH2BIN filters, working both for 
dummy heads and humans, which is described in the 
following. 
 
 
2.1  Fast HRTF measurement setup 

The experimental measurements and processing 
techniques employed were carried out at LABEL – 
LABoratory of ELectroacoustic located at Casa della 
Musica, Parma (Italy), making use also of some 
existing software, in particular Plogue Bidule, Adobe 
Audition with Aurora Plugins and Matlab. 

The recording equipment consists in a standard 
dummy head, a Neumann KU100, or alternatively, 
for human heads, a small couple of in-ear 
microphones provided by JVCKENWOOD 
Corporation, developed for the EXOFIELD® project 
(Figure 2) [9].  

 

 
Figure 2. EXOFIELD® microphones. 

The EXOFIELD® microphones are also employed 
for the headphones-equalization procedure, exactly as 
in the original EXOFIELD® method for stereo 
reproduction. In practice we extended the 
EXOFIELD® method to Ambisonics reproduction 
over headphones with head tracking. 

The microphones were connected to a Roland 
Studio Capture UA-1610 Audio Interface and placed 
in the center of a three-dimensional rig of 
loudspeakers with a radius of 1.30 m. Employed 
loudspeakers are 16 Turbosound Impact 50, and 2 
Genelec S30D in a 16.2 configuration (Figure 3). 

 
Figure 3. Measurement configuration 

 
The 16 Turbosound speakers are arranged in a 4-8-

4 configuration: eight placed in the vertexes of a cube 
(this geometry corresponds to the standard virtual 
loudspeakers configuration adopted by Google) and 
eight equally spaced along a ring at 45° steps, for 
improving performances on the horizontal plane.  

Two Genelec S30D have been used as subwoofers 
(fed by the signals of the 16 main speakers through 
cross-over filters), for covering the lack in low 
frequencies of the small Turbosound units. Cut off 
frequencies have been properly chosen: 50 Hz for 
high pass filter, to not excite lower frequencies room 
modes and 120 Hz for low pass filter, in order to have 
a good crossover with Turbosound loudspeakers. 

The response of each loudspeaker has been 
corrected with a pre-equalization filter. In the center 
of the loudspeaker rig a measurement microphone 
(B&K 4189 with preamplifier 2671) has been placed 
and a test signal is played and recorded subsequently 
by each loudspeaker. The test signal played is an ESS 
– Exponential Sine Sweep from 20 Hz to 20 kHz, 10 
seconds long plus 3 seconds of silence [10]. After 
getting the sequence of linear IRs for the 16 
loudspeakers, they were inverted with the Kirkeby 
method [11]. This way, a pre-equalization filter has 
been obtained for each loudspeaker, and has been 
inserted in the reproduction system so that the signal 
played by the corresponding loudspeaker gives a flat 
spectrum in the measurement point and all the signals 
are perfectly matched in gain and time-of-arrival 
(phase). 

The HRTFs measurement is also performed playing 
a sequence of 16 exponential sine sweeps, which are 
routed, in sequence, to one of the 16 Turbosound 
speakers, while the two subwoofers are always active. 



Binelli et al Individualized HRTF for playing VR videos with Ambisonics spatial audio on HMDs 

 

AES Conference on Audio for Virtual and Augmented Reality, Redmond, WA, USA,  
August 20–22, 2018 

Page 4 of 10 

For speeding up the measurements, the sweeps can 
be partially overlapped, resulting in a measurement 
time of approximately one minute (the silence can be 
shortened to twice the reverberation time of the 
room). 

 The binaural signal is recorded, coming by the 
Neumann dummy head or by the EXOFIELD® 
microphones being worn by the subject. At the end of 
the recording, the stereo file obtained is convolved 
with the inverse sweep to get a sequence of 16 
impulse responses, which eventually are cut of proper 
length (typically 16384 samples at 48 kHz), keeping 
only the linear response (Figure 4). 
 

 
Figure 4. IRs of the Neumann KU100 dummy head 

 
 
2.2  Signal processing 

 
The signal processing is shown in Figure 5. N is the 

number of SH, equal to 4 in case of FOA – First Order 
Ambisonics or equal to 16 in case of TOA – Third 
Order Ambisonics. M is the number of loudspeaker 
measurement directions: 16 in our case, but could be 
even higher, for better spatial resolution, albeit this 
method, addressing 3rd order Ambisonics maximum, 
requires no more than 32 loudspeakers for optimal 
performances. K is the number of reproduction 
transducers that is 2 using headphones. 

The measured HRIRs are disposed in an M-by-K 
(16-by-2) matrix, expressing the Speakers-to-
Binaural filters (SP2BIN). But we need instead a 
Spherical Harmonics-to-Binaural (SH2BIN) filter 
matrix: for getting this, we need to compute another 
set of filters, converting the Spherical Harmonics 
signals to the Speaker feeds (SH2SP, Figure 6). This 
is called Ambisonics decoder: an existing VST plugin 
was employed, providing 3rd order Ambisonics 
decoding to an arbitrary set of loudspeakers [12]. It is 

now possible to get SH2BIN by convolving SH2SP 
by SP2BIN. 

For avoiding coloration due to the transducers 
employed (microphones and headphones) an 
equalization procedure is mandatory. This is obtained 
placing the headphones over the head (either dummy 
or human, in this case wearing the EXOFIELD® 
microphones). The impulse responses are measured 
with an exponential sine sweep, an inverse filter for 
each ear is generated by using the Kirkeby method.  

The SH2BIN is than convolved with the inverse 
filters, giving the final SH2BINeq filters. This is a 
filter matrix, containing a set of 4-by-2 FIR filters in 
case of FOA or 16-by-2 FIR filters in case of TOA. 

The headphones signals are obtained by convolving 
the SHs (Ambisonics signals) with the SH2BINeq 
filters. 
 

 

Figure 5. Signal processing flow 

 
The computational load of these matrix 

convolutions is not a problem, because the 
SH2BINeq computation is done only once, offline 
and with a powerful system if needed. 

SH2SP (N x M) 
convolution 

rotation                 
(head tracking) 

spherical harmonics (Ambisonics) signals 

SP2BIN  (M x K) 
convolution  

headphones 
inverse filter 
convolution 

left/right ear signals 

head coordinates 
from HMD sensors 

SH2BINeq 
 filters 

N spherical harmonics 

M virtual speaker feeds 

K (2) headphone speakers 

K (2) headphone  speakers 

N spherical harmonics 
 



Binelli et al Individualized HRTF for playing VR videos with Ambisonics spatial audio on HMDs 

 

AES Conference on Audio for Virtual and Augmented Reality, Redmond, WA, USA,  
August 20–22, 2018 

Page 5 of 10 

 
Figure 6. IEM Allrad decoding matrix (SH2SP) for 

3rd order Ambisonics 

 

 
Figure 7. HMD headphones measurements set up. 

 
Eventually, the result of convolution is trimmed, 

transposed and saved in a multichannel wav file. The 
transposition means that, instead of using a standard 
stereo file (for binaural rendering) containing in 
sequence the filters for each Spherical Harmonic 
signal, as common with matrix convolution software 
such as X-volver or Kronlachner’s MCFX Convolver, 
the WAV file must have a number of channels equal 
to the number of SH signals, containing in sequence 
the filters for the Left and Right ears. This transposed 
format is required by Google Resonance, whilst Vive 
Cinema also recognizes the standard format. 

The length of filters is kept equal to 256 samples (at 
48 kHz) for each ear. In the following, these 
SH2BINeq filter sets are shown in case of FOA 
(Figure 8) and TOA (Figure 9). 

 
Figure 8. First order SH2BINeq decoding matrix, 

transposed. 

 

 
Figure 9. Third order SH2BINeq decoding matrix, 

transposed. 

 
3 PC based solution 

 
Vive Cinema has been chosen to be the software 

running on Windows computers to be modified 
because it’s a GPLv3 open source project compatible 
with many HMD systems, e.g. HTC Vive, Oculus 
Rift and Samsung Odyssey (Figure 10) and also 
supports many audio/video file types. 

 
Figure 10. HMDs used during development: HTC 

Vive (left) and Samsung Odyssey (right). 

It can play high resolution 360° video files with a 
refresh rate of 90 Hz and spatial audio formats (1st, 



Binelli et al Individualized HRTF for playing VR videos with Ambisonics spatial audio on HMDs 

 

AES Conference on Audio for Virtual and Augmented Reality, Redmond, WA, USA,  
August 20–22, 2018 

Page 6 of 10 

2nd, 3rd order Ambix/FuMa and Facebook TBE, 
Mono, Stereo, ITU 5.1 or ITU 7.1). Vive Cinema is a 
C++ project that relies on some open source third 
party libraries like FFmpeg for file decoding and Kiss 
FFT to implement the audio convolver. 

About the development environment, Microsoft 
Visual Studio Community 2017 on a Windows 10 
operating system has been used. On the hardware 
side, an Alienware Aurora desktop equipped with an 
NVDIA GeForce 1080 TI video card was employed 
together with the 2 HMD systems in Figure 10. 

The working base project (ver. 0.9.742, debug mode 
build) makes use of SH2BIN filters coming from 
Google Omnitone and Songbird projects and SADIE 
ITU 7.1. Those filters are 48 kHz, 256 samples, mono 
(left ear), so the audio rendering is using the mid/side 
symmetrical-stereo convolution (Figure 1, top). 

Modification of the open-source software was 
relatively easy, so that it was possible to remove the 
nasty and pointless symmetricity hypothesis, 
replacing the mid/side convolution scheme with a  
full matrix convolution scheme, which allows for 
employing a complete (not-symmetrical) SH2BINeq 
TOA (16 channels x 2) filter set. 

In detail, the features added to the project are: 
• Loading coefficients of SH2BINeq filter from a 

WAV file. When the program starts, all WAV 
files that are present in a default program 
subfolder are loaded. It is possible to reload by 
pressing F6 or load a file browsing the file system 
by pressing F7. If the file is stereo (standard, not 
transposed filter matrix), each block of 256 
samples is considered as a FIR filter related to a 
channel (Ambix-ordered filter sequence). 
Otherwise, if the file has 4 or more channels, each 
file channel is considered as a SH channel 
(transposed filter matrix), the first 256 samples are 
for the left ear and the following 256 for the right 
ear (like in Figure 8 and Figure 9). 

• True stereo (not symmetrical) convolution. This 
feature allows to compare true stereo and mid/side 
stereo convolutions and so to test the acoustic 
symmetry hypothesis. The mid/side method is 
working with the preexisting Sadie filter set 
(displayed as Default) and for mono 
(symmetrical) SH2BINeq loaded files. 

• Real-time filters switching. It provides an instant 
switch allowing listening comparison among all 

loaded filters sets plus the default one. It is 
possible to switch by pressing the small touchpads 
and triggers included in the controllers of the 
HMD systems or Page Up/Down keys on the 
keyboard. 

• Current filter file name is displayed on HMD and 
PC monitor. On the HMD, the current filter file 
name is displayed in the mid-low part of the scene 
in the 4 cardinal directions (Figure 11). On the 
top-right corner of the PC screen, a list of all 
available SH2BIN filters is displayed, the current 
one is highlighted in red (Figure 12). 

The whole modified project (source code and pre-
compiled executable) is available for download at the 
following link: 
http://www.angelofarina.it/Public/ViveCinema 
 

 
Figure 11. HMD screenshot during playback. In the 

lower side, the current filter name is displayed. 

 
Figure 12. Vive Cinema start screen. In the top-right 
corner the list of available filters is displayed. The 

current filter is highlighted in red. 



Binelli et al Individualized HRTF for playing VR videos with Ambisonics spatial audio on HMDs 

 

AES Conference on Audio for Virtual and Augmented Reality, Redmond, WA, USA,  
August 20–22, 2018 

Page 7 of 10 

4 Standalone solution 
 

Two main contenders are now dividing the market 
of portable VR visors: Google, with Cardboard and 
Daydream, and Oculus (Facebook), with Samsung 
Gear VR and Oculus Go.  

Cardboard runs also on low cost smartphones, but 
with bad performances, whilst Daydream only runs 
on very expensive top-grade Android smartphones or 
on expensive stand-alone VR visors (i.e., Lenovo 
Mirage Solo). Instead the Oculus solution runs on 
not-so-expensive Samsung smartphones (S6 and 
above), or on the very cheap standalone Oculus GO 
device. 

For these reasons, it has been opted (for now) for 
the Facebook powered solutions (Figure 13). 

 

 
Figure 13. Oculus Go and Samsung Gear VR. 

At the current stage of development, the SH2BINeq 
filter matrix cannot be loaded at the run time, it must 
be embedded during compilation of the code. This 
means that it is not possible to install a generic app 
and then loading separately the SH2BIN filters, it is 
necessary to compile a specific app for each filter set, 
which will be embedded. Such a limitation will be 
possibly removed in the next future, allowing for 
getting a general-purpose app which installs “as is” 
and lets the user to load and select a SH2BINeq filter 
set. 

The same existing application is already running on 
both Gear VR and Oculus Go without the need of 
targeting a specific one, but the devices must be put 
in developer mode. For security reasons, to make the 
application working on a Samsung Gear VR also a 
protection file named Oculus Signature must be 
obtained for the specific smartphone employed and 
hardcoded in the application. These procedures will 
no longer be necessary after having the application 
certified by Google and Oculus and made it available 
on relative App Stores. 
 
 

4.1  Unity3D 
There are three main possibilities for creating 

Android applications: Android Studio, Unity3D and 
Unreal Engine. The last two are graphic environments 
that help the developer to create his own applications, 
with a user-friendly interface, many pre-compiled 
tools and the possibility to target a great number of 
devices, such as Microsoft PC, Xbox, OSX, iOS, 
Linux, Android or Sony PS. The drawback is that 
some compromises must be accepted 

The chosen platform is Unity3D, version 2018.1f1. 
It is not the most powerful: rendering quality 
provided by Unreal is much better for videogames. 
Android Studio instead offers much less limitations, 
being the native developing platform. Unity3D 
otherwise is the easiest of the three and the most 
diffused, well supported by the community: many 
example projects, forums and tutorials are available.  

Unity carries two principal limitations with some 
consequences: the maximum number of channels for 
a multi-channels wave file is still stuck to eight (7.1 
format) and Ambisonics soundtracks must be pre-
decoded by Unity itself. The first condition limits de 
facto to 1st order Ambisonics, being a 2nd order made 
of 9-channels, even if the audio engine is ready for 3rd 
order. The second condition instead obliges to 
employ separate audio and video files for being 
reproduced by the application. 

Therefore, it is not yet possible to open directly 
from a folder a standard 360° equirectangular video 
with embedded Ambisonics soundtrack, as it happens 
on the Vive Cinema app. Instead, it is necessary to 
provide a separate file containing the soundtrack. The 
last must be loaded in Unity, pre-decoded as 
Ambisonics (Figure 14) and then saved as 
AssetBundles (name is “audio” and versions goes 
from 01 to 16). This is an owner format containing 
pre-processed contents that can be used by 
applications without the need to hardcode them: they 
can be downloaded or copied in memory and loaded 
when required. To keep the correct matching between 
audio and video tracks, a proper name code must be 
employed: for video files video01, video02 and so on, 
while for audio files audio.01, audio.02 and so on. 

 



Binelli et al Individualized HRTF for playing VR videos with Ambisonics spatial audio on HMDs 

 

AES Conference on Audio for Virtual and Augmented Reality, Redmond, WA, USA,  
August 20–22, 2018 

Page 8 of 10 

 
Figure 14. First order Ambisonics decoding setting 

inside Unity3D. 

Two packages of plugins are needed for making the 
application to work on Oculus platforms: Oculus 
SDK and OVR inspector. They can be both 
downloaded from the Oculus developer support 
webpage. 

The interface of the application consists in a main 
panoramic 360° skybox where it is possible to choose 
the video scene to load or to quit the application and 
go back to the main VR screen (Figure 15, left). The 
choice can be done looking to the desired label and 
confirming with a click. Each label is connected to a 
scene where corresponding audio/video tracks are 
loaded. For these functions, two dedicated scripts 
have been written, and two dedicated asset packages 
have been downloaded: a skybox and a Unity UI.  
 

  
Figure 15. Application main screen (left) and 

rendering scene (right). 

The reproduction scene is made of a main camera, 
placed in the middle of a 360° video projection sphere 
(Figure 15, right). A personalized shader has been 
used: the native 3D sphere object in fact has a uniform 
and too low polygonal density, resulting in visible 
artefacts at sphere’s poles. The personalized material 
created for the sphere has an inside-out property to 
correct the orientation of the image, which is seen by 
the camera from inside the sphere and not outside.  

The native Unity video player (Figure 16) and audio 
source (Figure 17) are attached to the sphere. In 
addition, the audio source is completed by the 

Resonance plugin script (Figure 18), thanks to which 
the Ambisonics soundtrack is binaurally decoded.  
 

 
Figure 16. Unity Video Player. 

 
Figure 17. Unity Audio Source. 

 
Figure 18. Resonance plugin. 

The usage of Resonance Audio as Ambisonics 
decoder must be done inside a dedicated control panel 
for Unity audio settings (Figure 19).  

 



Binelli et al Individualized HRTF for playing VR videos with Ambisonics spatial audio on HMDs 

 

AES Conference on Audio for Virtual and Augmented Reality, Redmond, WA, USA,  
August 20–22, 2018 

Page 9 of 10 

 
Figure 19. Unity audio settings. 

Two scripts made from scratch complete the scene: 
the first loads audio and video tracks when the scene 
is selected, the second one permits to go back to 
selection menu clicking the back button of input 
controller. 

The application must be compiled selecting 
Android as target and Oculus as Virtual Reality SDK 
(Figure 20). The last comes with Unity installation, 
the first instead becomes available only after having 
downloaded and installed Android Studio with the 
desired APIs.  

 

 
Figure 20. Unity target (left) and Virtual Reality 

SDK choice panel (right). 

 
All the scripts are coded in C# using Visual Studio 

2017.  
 
 
4.2  Google Resonance Audio 

Resonance Audio is a multi-platform spatial audio 
SDK, released open source by Google on GitHub. 
The following platforms are supported: Unity, 
Unreal, Fmod, Wwise, Daw, Web, Android and iOS. 
The project can be downloaded both as source code 

and in a precompiled version for each supported 
platform. Resonance Audio comes with a set of 
SADIE HRTFs, the mid/side convolution and an 
Ambisonics Decoder up to the 3rd order. 

We did not manage (yet) to inject the SH2BINeq 
filters in the Unity’s source code, which would make 
it possible to change them at run time. 

So we employed the precompiled version for Unity 
and injected the filters in the binary file named 
libaudiopluginresonanceaudio.so, that is the Android 
plugin used for Ambisonics decoding. This is a 
compiled shared object, therefore it has been 
necessary to examine it in a hexadecimal editor. With 
proper research keywords (“RIFF..WAVE”) the 
header of a WAV file has been found three times. In 
this way, it has been possible to locate the data of the 
wav files corresponding to SH2BIN SADIE filters for 
1st, 2nd and 3rd order. A double check has been done 
by copying the data in three empty binary files, saved 
with .wav extension and opened in Adobe Audition, 
compared against the original .wav files downloaded 
from the GitHub repository of Resonance Audio 
project. They were actually the same: 48 kHz, 16 bits, 
256 samples, mono (mid/side convolution). 

Using low-level functions, a Matlab script has been 
coded to automatically generate a version of the 
plugin with the personalized Ambisonics-to-Binaural 
filter data. The modified plugin is employed in the 
player app project, so that a new personalized APK is 
built, containing the new SH2BINeq filters. 

Of course this procedure impedes to load the 
SH2BIN filter at runtime, and will be replaced by a 
user-controllable procedure in the next future, 
allowing also for the user of the mobile version of our 
player to switch the SH2BINeq filter set at runtime. 

The whole modified project (source code and pre-
compiled APK) is available for download at the 
following link: 
http://www.angelofarina.it/Public/UniPrVR360app 
 
5 Conclusions 

Two solutions, one for standalone visors and one for 
desktop top-level visors, have been successfully 
coded making possible to test different sets of 
HRTFs. 

The standalone solution still presents some 
limitations, connected to the development platform 
and the intrinsic difficulty of Android systems. It is 



Binelli et al Individualized HRTF for playing VR videos with Ambisonics spatial audio on HMDs 

 

AES Conference on Audio for Virtual and Augmented Reality, Redmond, WA, USA,  
August 20–22, 2018 

Page 10 of 10 

reasonable to think that in a further version of Unity 
it will be possible to use 3rd order Ambisonics 
soundtracks, without having to pre-decode them. 
More inconvenient, one APK for each set of filters 
must be built: due to security reasons, the shared 
object containing Resonance Audio Android plugin 
cannot be loaded at runtime but must be included in 
the building. A solution is still under investigation. 

Nevertheless, currently this is the only one existing 
solution to use individualized HRTFs for decoding 
Ambisonics soundtracks on standalone VR devices. 

 
Acknowledgements 

This work was supported by the Italian Ministry of 
Economic Development (MISE), FUND FOR THE 
SUSTAINABLE GROWTH (F.C.S) under grant 
agreement (CUP) B48I15000130008, project VASM 
(“Vehicle Active Sound Management”). 

The authors want to express their profound 
gratitude to JVCKENWOOD Corporation for making 
available the EXOFIELD® technology, which 
allowed to measure quickly and reliably human 
HRTFs and to perform accurate, individualized 
headphones equalization. 

Special thanks to Hisako Shinbara, 
JVCKENWOOD Corporation, Tokyo, Japan 

 
 
 
References 
[1] Jacuzzi, Giordano; Brazzola, Sofia; Kares, 

Johannes, “Approaching Immersive 3D Audio 
Broadcast Streams of Live Performances” 
AES Convention 142, paper 9696 (2017). 

[2] Bourdot, Patrick; Katz, Brian F.G.; Tarault, 
Antoine; Vézien, Jean-Marc, “The Use of 3D-
Audio in a Multi-Modal Teleoperation 
Platform for Remote Driving/Supervision” 
30th International Conference: Intelligent 
Audio Environments, paper 23 (2007). 

[3] Farina, Angelo; Pinardi, Daniel; Binelli, 
Marco; Ebri, Michele; Ebri, Lorenzo, “Virtual 
Reality for Subjective Assessment of Sound 
Quality in Cars” AES Convention 144, paper 
10003 (2018). 

[4] Gavin Kearney and Tony Doyle, “A HRTF 
Database for Virtual Loudspeaker 
Rendering”, AES Convention 139, New York, 
NY, USA (2015) 

[5] V. R. Algazi, R. O. Duda, D. M. Thompson 
and C. Avendano – “The CIPIC hrtf database”, 
IEEE Workshop on Application of Signal 
Processing to Audio and Acoustics (2001). 

[6] Chan Jun Chun, Jung Min Moon, Geon Woo 
Lee, Nam Kyun Kim, and Hong Kook Kim – 
“Deep Neural Network Based HRTF 
Personalization Using Anthropometric 
Measurements”, AES Convention 143, New 
York, NY, USA (2017). 

[7] Jenny, Claudia; Majdak, Piotr; Reuter, 
Christoph, “SOFA Native Spatializer Plugin 
for Unity – Exchangeable HRTFs in Virtual 
Reality” AES Convention 144, eBrief 406 
(2018). 

[8] Noistering et al., “A 3D Ambisonic based 
binaural sound reproduction system”, AES 24th 
International Conference on Multichannel 
Audio, Banff, Alberta, Canada (2003) 

[9] “JVCKENWOOD Corporation 
“EXOFIELD® Headphone Technology 
Replicates the Acoustic Space of a Room”, 
News release, Las Vegas, USA, January 5, 
2018 
http://pro.jvc.com/pro/pr/2018/ces/JVC_Exof
ield.html 

[10] A. Farina, “Simultaneous measurement of 
impulse response and distortion with a swept-
sine technique” Audio Engineering Society 
Convention 108, paper 5093 (2000) 

[11] O.Kirkeby,  P.A. Nelson, P. Rubak, A. Farina, 
“Design of Cross-talk Cancellation Networks 
by using Fast Deconvolution”, 106th AES 
Convention, Munich, 8-11 may 1999. 

[12] https://plugins.iem.at/ 


	1 Introduction
	2 Development background
	2.1  Fast HRTF measurement setup
	2.2  Signal processing

	3 PC based solution
	4 Standalone solution
	4.1  Unity3D
	4.2  Google Resonance Audio

	5 Conclusions

