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ABSTRACT

The procedure described in this paper o�ers a valid mean to handle the problem of random error in temperature

measurements planned for the estimation of surface heat ux distribution. The ill-posed inverse heat conduction

boundary value problem is solved by using the Fourier Transform Method. This approach enables to use a Digital

Signal Processing technique to �lter the signal by removing the high frequency components due to noise. The theory

has been tested by measuring the temperature of a copper plate where a heat source distribution was provided by

some heater elements. The temperature map has been recorded with a thermographic system. Di�erent signal to

noise ratios have been considered in order to check the �ltering technique applied to the experimental data. The

procedure provides accurate results also when a high spatial resolution in the heat source localization is needed.

1. INTRODUCTION

In many engineering applications, like laser technology,

diagnostics of heat losses in electronic devices, or indus-

trial process monitoring it is necessary to know the heat

ux spatial distribution on the surface of the system un-

der investigation. The surface heat ux distribution is

usually estimated by measuring the temperature distri-

bution in the body. This problem is regarded as an in-

verse heat conduction problem (IHCP). Errors, which are

always present to some extent in the temperature mea-

surements, drastically decrease the accuracy in the heat

ux restoration. This is because the inverse boundary

problem is ill-posed as its solution does not satisfy the

requirement of existence, uniqueness and stability under

small changes in the measured input temperature values.

A quite large number of techniques has been proposed for

the solution of this problem. A comprehensive review on

the methods of solution of IHCP can be found in Beck et

al. (1985) and in �Ozi�sik (1993). The standard method

follows a least squares approach coupled to a minimiza-

tion procedure. Both the steady state and the transient

heat ux distribution are estimated by minimizing the

least squares error between the computed and experimen-

tal temperatures. Beck (1963), (1966), (1970), (1977) and

(1988) provides examples of the application of the method

for both parameter and function estimation. To reduce in-

stability in the solution the introduction of a regulariza-

tion parameter in the least squares equation was suggested

by Tikhonov and Arsenin (1977).

Another approach based on a stochastic description

of the experimental errors has been used for example by

Fadale et al. (1995). This method, known as maximum

likelihood method starts from probabilistic considerations

and leads again to a minimization of a functional.

In the present paper a di�erent procedure, intended to

overcome the problem of random experimental errors in

heat source localization from surface temperature mea-

surements, is suggested. The method is based on the

Fourier Transform technique for the solution of partial

di�erential equations and it is here used to �nd out the

heat source distribution in a square domain from the sur-

face temperature map recorded with an infrared camera.

2. FOURIER TRANSFORM METHOD

The Fourier Transform method provides a technique for

the solution of self-adjoint positive de�nite elliptic partial

di�erential equations. This method, coupled to a mode-

dependent discretization scheme, can be regarded as a dig-

ital signal processing approach, as suggested by Kuo and

Levy (1990).

Let's consider the steady state heat conduction equa-

tion with energy generation in a 2-D homogeneous domain

�r2T (x; y) + q(x; y) = 0 (1)

de�ned on the unit square 0 � x � 1, 0 � y � 1 with

vanishing temperature along its boundary. By using a

standard central-di�erence discretization scheme the con-



tinuous problem satis�ed by Eq.(1) is approximated as:

Ti�1;j � 2Ti;j + Ti+1;j

h2x
+
Ti;j�1 � 2Ti;j + Ti;j+1

h2y
= �

1

�
qi;j

(2)

where hx and hy are the spacings of a grid formed by

(Nx+1)(Ny+1) nodes. The replacement of the continuous

2-D Laplace operator by the corresponding discrete form

transfers the inverse problem into a class of well-posed

problems. This happens because the continuous operator

has an unbounded spectrum, while in the discrete domain

it has a �nite spectral radius, given by 4h�2x + 4h�2y .

The 2-D Laplace operator is self-adjoint and positive

de�nite, therefore its eigenfunctions form a complete basis

set with real and positive eigenvalues. It can be easily

demonstrated, Mar�cuk (1984), that on the unitary square

domain with zero boundary condition the eigenfunctions

are:

ui;j;kx;ky = 2sin(kx�ihx)sin(ky�jhy) (3)

and the corresponding eigenvalues:

Lkx;ky = 4

�
h�2x sin2

�
kx�hx

2

�
+ h�2y sin2

�
ky�hy

2

��

(4)

where 1 < kx < Nx�1, 1 < ky < Ny�1 and i; j = 1; 2; :::.

By expanding the solution and the source term in the

eigenfunctions:

Ti;j =

Nx�1X
i=0

Ny�1X
j=0

Tkx;kyui;j;kx;ky (5)

qi;j =

Nx�1X
i=0

Ny�1X
j=0

qkx;kyui;j;kx;ky (6)

the �nite di�erence Eq.(2) can be simpli�ed to the diago-

nal form:

�Lkx;kyTkx;ky +
1

�
qkx;ky = 0 ; (7)

where Tkx;ky and qkx;ky are the sine Fourier transforms of

Ti;j and qi;j .

We can easily solve Eq.(7) for qkx;ky . Then, by using

the inverse sine Fourier transform, the heat ux distribu-

tion in the spatial domain is obtained.

If an inhomogeneous condition is to be speci�ed at the

boundary the problem can be reverted into an equivalent

homogeneous one through the transformation:

h2q !
�
h2q � f

�
: (8)

It is equivalent to consider an e�ective source term

including the inhomogeneous term f . The accuracy in

the heat ux restoration is a�ected by the noise present

in the temperature measurement. In particular

k�qk � �Maxfj Lkx;ky jgk�Tk : (9)

On the other hand, the norms of temperature and heat

ux are related to each other as:

kTk �
1

�Minfj Lkx;ky jg
kqk : (10)

From Eq.(9) and Eq.(10) we obtain the �nal estimation

of the relative accuracy of heat ux restoration:

k�qk

kqk
�

Maxfj Lkx;ky jg

Minfj Lkx;ky jg

k�Tk

kTk
: (11)

From Eq.(4) it can be easily shown that:

2�2 � Lkx;ky �
4

hx
2
+

4

hy
2
: (12)

By substituting into Eq.(11) we then obtain

k�qk

kqk
�

1

�2
(N2

x +N2
y )
k�Tk

kTk
: (13)

This means that from temperature measurements per-

formed with 1% accuracy on a mesh of 64� 64 nodes the

heat ux is a�ected by uncertainties which are one thou-

sand greater.

Hence, the problem of heat ux restoration is well-

posed in the discrete domain but it is extremely ill-

conditioned.

To overcome this instability it is necessary to increase

the signal to noise ratio in the initial input temperature

data. This can be easily achieved in the frequency domain

since some assumptions on the spectra of both the signal

and of the noise can be done. In particular, in almost all

practical situations the exact signal has frequency com-

ponents concentrated in the region of low kx and ky val-

ues while the spectral components of noise are distributed

uniformly over the entire frequency domain.

It follows that for high kx and ky values the signal is

overcome by noise which thus causes enormous error in the

heat ux restoration. Therefore, the Fourier components

Tkx;ky can be suitably �ltered by an appropriate 2-D low

pass �lter with frequency response Wkx;ky . The �ltered

signal

T
f
kx;ky

= Tkx;kyWkx;ky (14)

has a better signal to noise ratio than the rough measured

data and can thus be used to recover the heat ux com-

ponents by using Eq.(7). The �ltering technique we have

adopted is basically a brick-wall low pass �lter convolved

with a 2-D Hamming window applied to reduce the e�ect

of rippling in the passband region.

By de�ning �xy = kx
2

Fx
2 +

ky
2

Fy
2 , its expression follows

as:

Wkx;ky (Fx; Fy) = 0:54 + 0:46 cos
h
� (�xy)

1=2
i

(15)

if �xy � 1, or

Wkx;ky (Fx; Fy) = 0 (16)

if �xy > 1.

The cut-o� frequencies Fx and Fy depend on the mag-

nitude of the noise present in the experimental data and

can be determined from a preliminary investigation on the

noise equivalent temperature di�erence of the measuring

device. In many situation it can be necessary to apply a

non symmetric �lter in the frequency domain and this can

be easily achieved by selecting di�erent values for Fx and

Fy . In this way the �ltering procedure can be adjusted

according to the measuring system used and to the signal

to noise ratio.



Figure 1: Experimental setup.

3. EXPERIMENTAL SETUP

The experimental tests were conducted on a thin square

copper plate, 0:85 mm thick and 0:2 m wide. It was �xed

on a 3 mm thick copper frame. To control the temper-

ature at the boundary a copper tube with a diameter of

10 mm has been soldered to the frame and connected to

a heat bath with a refrigerant unit. Figure 1 shows the

experimental setup.

To produce di�erent heat source distributions two pin

heaters supported by a clamp were put in direct contact

with the plate. The dimension of the pin was about 3 mm,

and the power output was adjustable within a maximum

value of 50 W for each of them.

The temperature distribution on the surface was mea-

sured by a thermographic system (AVIO Thermal Video

System TVS 2000ST by Nippon Avionics CO). The tem-

perature map was recorded in a color image with a res-

olution of 256 horizontal � 200 vertical pixels with 8-bit

level. The noise equivalent temperature di�erence of the

system is 0:2K. This value can be reduced by averaging

over more images. In particular the system enables to

average over 2n images, with n varying from 1 to 8.

The surface of the slab was painted with a black

opaque painting and its emissivity has been estimated by

measuring the temperature in some points with type-T

thermocouples. The value � � 0:96 was found.

4. RESULTS

To test the noise level of the whole system a preliminary

measure was performed while maintaining the plate in

thermal equilibrium with the ambient. The data were

recorded by averaging over di�erent number of images.

Figure 2 shows the temperature distribution in the fre-

quency domain recorded with no average and by averaging

over 4; 16 and 256 images.

The spectra have been obtained via a 32 � 32 points

sine Fourier transform. Figure 3 shows the mean value

and the standard deviation of the normalized temperature

data versus the number of images.

Although increasing the averaging the e�ect of the

noise is greatly reduced, some residual frequency compo-

nents are still present also in the case of the average over

256 images.

The residual frequency components are probably due

to the mechanical scanning device of the infrared cam-

era. However the information we have about the measur-

ing system do not allow to clearly identify their origin.

In the following analysis this e�ect is taken into account

by �ltering from the signal the speci�c residual frequency

components found with this preliminary analysis of the

infrared camera response.

Other e�ects like radiation losses or other modulation

e�ects due to the sensor itself which produce a degrada-

tion of the image, without introducing other components

in the frequency domain, have been neglected. The pro-

cedure here implemented focuses in fact attention on the

problem of random experimental error in inverse steady

state heat conduction problem and, in particular, on en-

hancing the spatial resolution in heat source localisation.

In �gure 4 the normalized measured temperature is

compared with the noise level of the system estimated

in isothermal condition. In particular the temperature

distribution in the frequency domain along the kx and ky
directions is compared to the noise components, averaged

along the same directions, shown in �gure 2 for M = 1

and M = 256.

From the data it can be deduced that increasing kx
and ky the e�ect of the noise becomes dominant over the

signal. Especially in the kx direction the noise hides the

signal even in the case of 256 images already for kx greater
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Figure 2: Normalized temperature distribution in the frequency domain obtained by averaging over di�erent numbers of

images.

than 10. From this comparison the cuto� frequencies for

the low-pass �lter, Fx and Fy in Eq.(15) and Eq.(16),

can be estimated. In the present application they were

selected in the range 10 < F < 18, for both Fx and Fy .
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Figure 3: Mean value and standard deviation of normal-

ized temperature data versus the number of images.

The heat ux distribution was created by placing two

pin heaters in contact with the copper slab at di�erent

distances. Distances between the pin axis of 23; 13; 8; 6; 5

mm were tested. The distance to pixel number ratio has

been estimated to be 0:78 mm=pixel in the horizontal di-

rection and 0:69 mm=pixel in the vertical direction. The

two peaks in the restored heat ux distribution appear to

be resolved up to distances of 5 mm on the tested cop-

per plate. Figures 5 and 6 show the temperature and

the recovered heat sources distribution in a 32� 32 pixels

grid corresponding to a distance of 5 mm between the pin

heaters.

It is worth saying that from the rough temperature

distribution it is not possible to distinguish the two peaks

and that without the �ltering procedure the data do not

allow to recover the e�ective surface heat ux distribution.

Figure 7 clearly shows that it is impossible to estimate the

heat source position without rejecting the high frequency

components due to the experimental noise.

Measurements were performed also with three heat

sources having di�erent intensities. Figure 8 shows that

the heat ux distribution is successfully recovered in this

case, too.

The real and the estimated distances between the two

heat sources considered in the experiment are compared

in �gure 9.

The solution method for the restoration of heat ux
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Figure 4: Normalized measured temperature (solid line) and pure noise (dashed line) versus kx and ky directions with no

average and averaged over 256 images.

distribution here presented requires basically one direct

and one indirect transformation from the space domain

to the frequency domain. From the computational point

of view, if a fast Fourier transform algorithm is used, the

complexity is O(N2ln(N)). In the standard method based

on the least squares approach the minimization procedure

leads instead to the solution of a system of linear equa-

tions. The computational complexity is in this caseO(N3)

if, for instance, a Gaussian-elimination solution is used.

The disadvantage of the Fourier transform method is that

it can be easily applied only to square or rectangular do-

main. The matrix approach has instead a more general

applicability and can be used also where an irregular do-

main or a nonuniform grid are considered.

However it can be noted that, if infrared thermogra-

phy is used as measuring technique, the temperature map

can always be converted to a rectangular or square image

with equally spaced pixels in each direction. The other

traditional measuring devices, like thermocouples, are in

any case not suitable for this application because a high

spatial resolution is needed to discretize the domain and

to make a good sampling of the signal.

5. CONCLUSIONS

A new technique for heat source identi�cation based on

the expansion of the temperature distribution in eigen-

functions of the discrete 2-D Laplace operator has been

developed. To treat the ill-posed problem of heat ux

restoration a �ltration technique typical of signal process-

ing analysis has been used. The theory has been tested on

experimental data obtained from a series of thermographic

temperature measurements taken on a locally heated cop-

per square plate. The heat source distribution in the sys-

tem has been successfully restored and the method has

then found a validation in the experimental results. The

processing of temperature data enables to drastically in-

crease the spatial resolution in surface heat ux restora-

tion. The developed technique allows to reduce the e�ect

of noise in temperature data and can thus be applied in a

variety of engineering applications.
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Figure 5: Normalized temperature distribution.
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NOMENCLATURE

f inhomogeneous term

Fx; Fy cuto� frequencies (1=m)

hx =
1

Nx
; hy =

1

Ny
grid spacings

kx; ky wave numbers (1=m)

M number of images

Nx; Ny number of grid points

q heat generation (W=m3)

T temperature (K)

ui;j;kx;ky eigenfunctions of the 2D Laplace operator

Wkx;ky (Fx; Fy) �lter matrix

� thermal conductivity (W=m �K)

� emissivity

�xy
kx

2

Fx
2 +

ky
2

Fy
2

L eigenvalues of the 2D Laplace operator

Superscripts

f �ltered
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