
Proceedings of the 2002 International Conference on Auditory Display

ICAD01-1

SCENE MANAGEMENT FOR MODELLED AUDIO OBJECTS IN
INTERACTIVE WORLDS

Dylan Menzies

Zenprobe Technologies
dylan@zenprobe.com

ABSTRACT

The acoustic behaviour of natural objects and their interactions
can be accurately recreated in interactive world simulations. A
realistic simulation may contain many such objects, any
combination of which may be interacting at a given time. High
and low level structures are presented for managing this
complexity efficiently and with flexibility, based upon an
existing PC system.

1. INTRODUCTION

There has been a growing interest in the simulation of sounds
in interactive worlds, using models that are precisely
stimulated by dynamical interactions in the world. This adds a
new level of immersion to the interactive acoustic experience.
The field can be traced back to the work of Hahn [1], in which
impact sounds between graphically rendered objects were
modeled with modal resonators. Van den Doel [2, 3] expanded
this to continuous contact excitations depending on contact
forces and surface properties. O’Brien employs finite element
techniques to simulate object resonance, [4]. While in principle
this offers the ability to simulate resonance from detailed
material and geometric data, it is much more costly than other
less explicit resonator models, such as modal resonators, and
lacks the capability of being fitted to recordings, as described
by van den Doel.

A wide range of interesting acoustic phenomena can be
captured using the model of impacts, continuous interactions
between solid objects and resonance, forming the basis for the
present work. Of course there are many phenomena that are not
covered by this model, for instance the splashing of liquids or
the howling of wind. Providing a good structure for the more
restricted case will hopefully lay a solid foundation for future
developments.

One barrier to the wider adoption of these techniques has
been the lack of a coherent system for efficiently and
dynamically structuring large numbers of acoustically
interacting objects, as might typically be required to
complement a 3D interactive world system. The problem is
analogous to a 3D renderer that must coordinate all the object
information to produce the final image. Existing virtual reality
audio systems have focused on providing flexible interfaces
and support for room acoustics and spatialization, [5,6,7]. The
system described here introduces new structures and
techniques for managing interacting objects.

Here are some of the issues that appear at the outset:

1. How should the interface be designed to enable the
creation and maintenance of an interactive acoustic world?
In real-time, efficiency is very important, but flexibility to

cope with ever-changing and widely differentiated scenes
is important too.

2. There may be many objects that could make sound, but at
any time most may be quiet.

3. Collisions are short-lived, so collision resources should be
shared.

4. Continuous contact should be handled separately from
impacts. For instance we might have to inform the system
when a contact finishes, but an impact should schedule its
own termination.

This paper describes the structure of a fully implemented
system,1 that addresses these problems of scene management.
The system was integrated with a high performance dynamics
and collision engine2.

We start with a look at the main data structures, then
describe the user interface, and finally the engine that
generates the sound output.

2. OVERVIEW OF STRUCTURES

The data structures used are naturally object-oriented, and so
are described well by languages such as java and C++3.
Briefly, for those unfamiliar with object-oriented terminology,
a class is a data type, instances of which are objects. Classes
have associated methods or functions, and each object can have
its own internal variable space. An abstract class cannot have
instances of its own, but rather is a base for more specific
classes, with additional methods, that can.

In the following discussion the controller will refer to the
system that is communicating simulation-time information
about dynamical events to the acoustic scene manager or ASM.
This will normally take the form of an interface layer sitting
between the dynamics and collision engine and the ASM.

2.1. Principle Classes

The highest level classes are body, contact and impact. Refer
to Figure 1. It shows how principle objects refer to each other
using pointers. Body contains everything needed to generate
sound from a physical object. It references two objects. The
first is of abstract class resonator, and the second abstract class
surface. Keeping these classes abstract enables a variety of
specific resonator and and surface models to be interchanged
freely through a common basic interface. If a new model is

1 MeAcoustics 1999-2000, Mathengine plc.
2 Downloads will be made available at
www.zenprobe.com/pub
3 The API is in C for maximum compatibility.

Proceedings of the 2002 International Conference on Auditory Display

ICAD01-2

introduced it can be quickly added without any changes to the
overall structure.

body

resonator surface
contact

body1 body2

contactGenerator

impact

body1 body2

impactGenerator

 Figure 1. Pointers between principle objects

Specific resonator classes contain models for the object
resonance, for instance using modal synthesis. So a resonator
object contains all the state for the resonating process. It may
be shared by several bodies, see Figure 2, which is unphysical,
but useful for economizing in situations where large numbers
of similar acoustic objects are interacting, for examples
marbles in a jar. A specific surface class contains parameter
settings for the surface, and a pool of specific associated
generator objects, which it manages. When two surfaces come
into contact, their respective surface objects activate new
generators. In this way a single surface can be interacting with
several other surfaces at once.

body1

resonator

body2

body3

body4

Figure 2. Multiple references to a resonator

Contact and impact objects are used to contain information
about currently active collision events. Because collisions are
rapidly starting and ending, object resources are held
efficiently in pre-initialized pools. Contact objects are used by
the controller when object dynamics indicate that the two
surfaces will remain in contact for a while, and impacts are
used when the objects are briefly in contact for one integration
step and impulse information is available. Contacts must be
continuously updated with contact force and speed information,
and must be deactivated once the collision system detects
separation, to free resources. Impacts on the other hand, are
automatically deactivated once the excitation signal has been
generated. This signal depends only on the initial dynamic
information.

2.2. Specific Classes and models

The only specific surface class currently available is
segmentSurface. This is associated with a
segmentContactGenerator for continuous contact, similar to

that described by van den Doel, in which the contact point
behaves like a gramophone needle running over the two
surfaces, with added low pass filtering. The cutoff frequency is
lowered as the relative speed of the surfaces at the contact
point decreases, reflecting the decreasing energy of the
interaction. When the objects are ‘ rolling’ relative to one
another, this speed is zero, and the filter cutoff attains a
minimum. A segment object is a holder for an audio recording.
These are used by segmentContactGenerator to describe the
surface ‘ relief’ .

Likewise a segmentImpactGenerator class is defined for
impacts. This generates a pulse according to the combined
‘hardness’ of the two surfaces and the impact impulse. A
harder impact produces a shorter pulse, and the impulse
determines the amplitude. The expression for hardness can be

derived from a simple elastic collision model. If 1γ , 2γ are

the spring constants, measuring hardness, of the two surfaces,

then the combined effective spring constant is () 11
2

1
1

−−− + γγ .

As expected, the surface is at least as 'soft' as the softer of the
two surfaces.

As a further refinement a segmentImpactGenerator can
generate a ‘ skid’ sound by briefly deploying a
segmentContactGenerator object, initialized with contact speed
and impulse data. This models the way the surfaces will slide
past each other for a short time during the impact. For
example, a ball bounced off a static surface will skid more the
faster it spins. This helps greatly to enliven and add realism to
impacts, which may form a large proportion of the collision
events occuring.

ModalResonator is a specfic resonator class using modal
synthesis. It points to a modalData object containing a list of
modes that model a particular object. Several modalResonators
might share the same modalData.

Many other existing resonator models could readily be
incorporated. A sister paper discusses the perceptual
resonator, a resonator model for efficient diffuse resonance
based upon perceptual modelling.

segmentSurface

segment

modalResonator

modalData

 Figure 3. Pointers between specific objects

2.3. Collision Signal Flow

The signal flow due to a collision is independent of the specific
class of the surface and resonator objects. Excitations from
each surface can be routed to either of the body resonators, and
directly to the output. This is achieved using gain controls built
into the generators and resonators, and with external gains. See
Figure 4. The routing flexibility allows the components of
collision sound to be quickly and carefully balanced according
to practical and aesthetic considerations.

Proceedings of the 2002 International Conference on Auditory Display

ICAD01-3

gen1

gen2

res1

res2

gain settings

dynamic info

Figure 4. Contact and Impact signal flow

3. THE APPLICATION INTERFACE

The overview has introduced the main structures. Now we
present the application interface, simplified for readability. It
includes initialization functions, some of which might be
directly used by the application developer, and run-time
functions that are more likely accessed by an integration layer
that sits between the ASM and the dynamics and collision
systems. This should help clarify the ASM operation, and
introduce some more detailed features. Many of these functions
are public methods of the Classes. Enquiry functions have
mostly been omitted. The usual C-like syntax applies: ()
contain function parameters, return values are written at the
head of the function and <class>* indicates a pointer to an
object.

3.1. Body:

The following are all called during initialization. Once a body
is created its parameters can be set. The resonator and surface
can be to any specific object (modal, segment). The gain
settings correspond to those indicated in Figure 4.

body *create();
destroy(body *);
setResonator(body *b, resonator *r);
setSurface(body *b, surface *s);
setContactMasterGain(body *b, float g);
setContactToOtherResonatorGain(body *b, float g);
setContactDirectGain(body *b, float g);
setImpactToOtherResGain(body *b, float g);
setImpactDirectGain(body *b, float g);

The final two body methods can be used to conveniently switch
the acoustic behaviour of an object on or off during runtime,
useful if switching context form one scene to another.

bodyEnable(body *b);
bodyDisable(body *b);

3.2. resonator:

First global functions for managing the activation of specific
resonators.

activationManagerInit(int n);
activationManagerGetNumInUse();
activationManagerGetNumUsed();

Now the abstract base methods. The quiet-level determines the
sound level at which the resonator will automatically be
silenced and deactivated. For the modal resonator this method
is implemented for efficiency just by monitoring the amplitude
of the lowest mode from its state. A resonator can be forced
quiet manually when changing context. Auxilliary scale factors
are useful for special effects, for instance linking pitch to body
deformation to simulate dynamically varying resonance
frequencies.1 SetMaxContactDamping limits the accumulated
damping from multiple surfaces touching a body.

resDeactivate(res *r);
resSetQuietLevel(res *r, float l);
resMakeQuiet();
resSetAuxAmpScale(res *r, float s);
resSetAuxFreqScale(res *r, float s);
resSetAuxDampScale(res *r, float s);
resSetMaxContactDamping(res *r, float d);

3.3. modal:

ModalData is the initialization data type used by the specific
modal resonator. It contains all the mode amplitudes and decay
factors.

modalDataCreate();
modalDataDestroy(modalData *d);
modalDataReadDatafile(modalData *d, const char
*filename);
modalDataGetNumModes(const modalData *d);

Here are the modal resonator methods. Sometimes it is useful
to limit the number of modes used in some standard modal
data set.

modalRes* modalResCreate();
modalResDestroy(modalRes *r);
modalResSetData(modalRes *r, const modalData *d);
modalResSetNumActiveModes(modalRes *r, int n);

3.4. surface:

The base surface methods allow the setting of hardness,
contact damping, and the default values for the surface gains
shown in Figure 4. Each surface touching a body contributes
some damping, making the resonance more short lived.

surfaceSetHardness(surface *s, float h);
surfaceSetContactDamping(surface *s, float d);
surfaceSetContactPostMasterGainLimit(surface *s,
float l);
surfaceSetContactMasterGain(surface *s, float g);
surfaceSetContactToOtherResGain(surface *s, float g);
surfaceSetContactDirectGain(surface *s, float g);
surfaceSetImpactPostMasterGainLimit(surface *s,

1 See the deformable teapot demo,
www.zenprobe.com/pub

Proceedings of the 2002 International Conference on Auditory Display

ICAD01-4

float l);
surfaceSetImpactMasterGain(surface *s, float g);
surfaceSetImpactToOtherResGain(surface *s, float g);
surfaceSetImpactDirectGain(surface *s, float g);

3.5. segment:

The specfic segment surface uses a class segment for holding
wave data describing the surface texture. A method allows the
segment to be loaded direct from an audio file.

segment* segmentCreate();
segmentDestroy(segment *s);
segmentReadAudioFile(segment *s, const char
*filename);
short* segmentGetStart(const segment *s);
long segmentGetNumFrames(const segment *s);

The main initialization parameters for a segment surface are
for its generator; the cutoff frequencies at zero slip and some
specified non-zero slip speed, and the relation between contact
speed and segment read rate.

segSurface* segSurfaceCreate();
segSurfaceDestroy(segSurface *s);
segSurfaceSetSegment(segSurface *s, const segment
*seg);
segment* segSurfaceGetSegment(const segSurface *s);
segSurfaceSetCutoffFreqAtZeroSlipSpeedCutoffFreq(
segSurface *s, float f);
segSurfaceSetCutoffFreqAtNonzeroSlipSpeedCutoffFre
q(segSurface *s, float f, float speed);
segSurfaceSetRateAtSpeed(segSurface *s, float r, float
speed);

Skidding is a short continuous contact sound when an impact
occurs, caused by a loose and/or non-smooth surface. Skid time
can be determined in different ways; either fixed or varying
according to the time the colliding bodies would be within a
collision 'thickness'. The latter means that shallow angle,
'grazing', colliding surfaces enjoy longer skid times than head-
on surfaces for the same collision speed, as you would expect.

segSurfaceSetSkidGain(segSurface *s, float g);
segSurfaceSetSkidImpulseToForceRatio(segSurface *s,
float r);
segSurfaceSetSkidTime(segSurface *s, float t);
segSurfaceSetSkidThickness(segSurface *s, float t);
segSurfaceSetSkidMaxTime(segSurface *s, float t);
segSurfaceSetSkidMinTime(segSurface *s, float t);

A pool of specific collision generators is maintained for fast
creation and destruction of generator resources. The following
functions help manage this.

segSurfaceContactGenPoolInit(int numContacts);
segSurfaceImpactGenPoolInit(int numContacts);
segSurfaceContactGenPoolGetNumInUse();
segSurfaceContactGenPoolGetNumUsed();
segSurfaceImpactGenPoolGetNumInUse();
segSurfaceImpactGenPoolGetNumUsed();

3.6. contact:

Like surface generators, contacts are drawn from a pool for
speed.

contactPoolInit(int numContacts);
contact* contactPoolCreateContact();
contactPoolDestroyContact(contact *c);
contactPoolGetNumInUse();
contactPoolGetNumUsed();

After pulling a fresh contact it must first be associated with the
two colliding audio bodies. The gain parameters shown in
Figure 4 can be defined, and this temporarily overrides
previous definitions in the associated surface objects.

contactSetBody1(contact *c, const body *b);
contactSetBody2(contact *c, const body *b);
contactSetSurface1ContactMasterGain(contact *c,
float g);
contactSetSurface2ContactMasterGain(contact *c,
float g);
contactSetSurface1ToRes2ContactGain(contact *c,
float g);
contactSetSurface2ToRes1ContactGain(contact *c,
float g);
contactSetSurface1DirectContactGain(contact *c,
float g);
contactSetSurface2DirectContactGain(contact *c,
float g);

ContactDynamicData is a structure containing the parameters
which must be updated at each audio tick for each contact.

typedef
struct
{

float speedContactRelBody1;
float speedContactRelBody2;
float speedBody1RelBody2AtContact;
float contactForce;

}contactDynamicData;

The contact data is passed to the contact with the following
method.

contactSetDynamicData(contact *c,
contactDynamicData *d);

3.7. impact:

Impacts are handled in a similar way to contacts, with the
important difference that dynamic data only needs to be sent
once, and the impact releases itself back to the pool
automatically. The dynamic data is slightly different. There is
no sense in which rolling can be conveyed.

impactPoolInit(int numImpacts);
impact* impactPoolCreateImpact();
impactPoolDestroyImpact(impact *i);
impactPoolGetNumInUse();
impactPoolGetNumUsed();

Proceedings of the 2002 International Conference on Auditory Display

ICAD01-5

impactSetBody1(impact *i, const body *b);
impactSetBody2(impact *i, const body *b);
impactSetSurface1ImpactMasterGain(impact *i,
float g);
impactSetSurface2ImpactMasterGain(impact *i,
float g);
impactSetSurface1ToRes2ImpactGain(impact *i,
float g);
impactSetSurface2ToRes1ImpactGain(impact *i,
float g);
impactSetSurface1DirectImpactGain(impact *i,
float g);
impactSetSurface2DirectImpactGain(impact *i,
float g);

typedef
struct
{

float relTangentSpeedAtImpact;
float relNormalSpeedAtImpact;
float impactImpulse;

}impactDynamicData;

impactSetDynamicData(impact *i, const
impactDynamicData *d);

3.8. block:

Blocks are simple objects for holding sample vectors. In
simulation-time they are pulled from a pool for speed, and this
must be initialized.

blockSetMaxNumSamples(int n);
block* blockCreate();
blockPoolInit(int numContacts);
block* blockPoolCreateBlock();
blockPoolGetNumInUse();
blockPoolGetNumUsed();

3.9. generate:

These global functions initialize the audio system and provide
ways to update the audio buffers during simulation-time. A
frame is a unit of input, output or processing over a single
audio sample duration. It is important that the engine knows
the sample rate so that it can generate the resonant frequencies
correctly for example. The stream buffer accumlates blocks
before sending to the device buffer. Depending on the system
there are different optimal configurations to achieve the best
latency and guard against buffer underrun.

setNumFramesPerSecond(int n);
outputStreamSetNumStreamBufFrames(int n);
outputStreamSetNumDeviceBufFrames(int n);
openAudioOutputStream();

The generate functions provide ways to operate the audio
engine in simulation-time. The most common method is to
create a separate audio engine thread with
startGenreateThread(). lock() and unlock() then provide safe
ways to send dynamic data to the engine. autoGenerate() runs

the engine in the same thread. It will calculate as many blocks
as required. adaptiveAutoGenerate() is an experimental
extension that does the same thing but tries to take into
account how times between updates are changing to predict
how many blocks should be calculated.

generateInit();
float* generate();
autoGenerate();
adaptiveAutoGenerate();

startGenerateThread();
generateSetUserCallback(void (*cb)(float*));
lock();
unlock();

This function sets a maximum resource cost that is not to be
exceeded. Costs include resonators, surfaces, contacts, and are
automatically accounted during the simulation.

setMaxTimeCost(int c);

3.10. integration:

Here is an example of what the interface to an integration layer
looks like. One initialization function is used to pass handles
for the dynamics and collision engines. Another is used to
relate each dynamics body to an acoustic body. Finally a
simulation-time tick function. It is clear from the simplicity of
these functions that a high degree of encapsulation has been
achieved.

MeatInit(McdDtBridgeID h, McdSpaceID s);
MeatMdtBodySetbody(MdtBodyID db, body* ab);
MeatUpdateAudio();

4. THE ENGINE

4.1. Basic tools

Since the target processor is a desktop machine, signal
processing is performed on blocks of samples to maximize
efficiency, with some small latency penalty. A block is
typically 100-200 samples for best results. Further
optimization is made by sharing block resources dynamically
during the course of signal processing. This helps keep low-
cache and non-cache operations to a minimum.

4.2. Calculation phases

To calculate one block of output, the engine executes two
phases. First it calculates all the surface excitations and
accumulates the results in block input buffers assigned to the
active resonators. Then the resonators are made to process
their input, and their output is accumulated in the main output
buffer. Figure 5 illustrates the signal flow with block buffers
shown. The process is complicated slightly if a resonator is
faded out. Then a temporary buffer is used to hold the

Proceedings of the 2002 International Conference on Auditory Display

ICAD01-6

resonator output so that it can be faded over one block and then
accumulated with the output buffer.

+
res

gen

gen

gen
+
+

+
+

Figure 5. Buffered signal flow

4.3. Resonator quieting and waking

One problem with specific resonators such as the modal
resonator, is that the output following an excitation decays
exponentially, and eventually it is too quiet to be heard even
though it still consumes resources. The ASM incorporates a
system for switching off resonators when they are judged to be
quiet enough and then waking them up when they receive new
excitation. The engine queries each resonator whether it is
‘quiet’ using an internal base-method. A sleeping resonator is
switched on if its input signal crosses a similarly defined
threshold. As a refinement to this technique, the last block of
output before a resonator is switched off, is faded to zero. This
allows resonators to be stopped without any glitching, which
can be noticeable even if the sound of the resonator was
previously well masked.

4.4. Cost limiting

It is important to limit the total time spent calculating a block
of output, since otherwise the performance of the whole system
could degrade unacceptably. A simple limiting system is
implemented in which resonators and generators have
associated cost functions. When the total cost of active objects
exceeds a threshold, then no new objects can be activated until
old ones become deactivated. This approach works well, but
could in principle be improved by automatically deactivating
objects that are deemed to have become ‘ low priority’ , perhaps
because they are masked by other sounds, or do not relate to
foreground interactive events.

4.5. Accumulated contact damping

This feature models the way that resonators become damped
when their associated surfaces are in contact with other
surfaces. The engine implements this during the resonator
input accumulation phase by accumlating surface damping
factors from surfaces that are presently in contact with the
associated surface of the resonator. Before the second phase
the resonator damping is adjusted accordingly. Accumlated
damping is surprisingly effective improvement to the realism
of object interactions.

4.6. Integration

As previously mentioned, some form of integration layer is
required to interface the ASM with the dynamics and collision
engine, and hide the complexities of run-time updating from
the application developer. The precise nature of the layer will
depend on the details of the engine and its interface.

The main problem is keeping track of when a contact is
made and then breaks, corresponding to when the audio contact
starts and stops. Persistent dynamic contacts retain their
identity from one integration step to the next, where as non-
persistent do not, and arise from collision systems that simply
recalculate a new set of contact points at each step. Persistent
contacts can be tagged with user data pointing to corresponding
acoustic contacts for easy updating of dynamic data. Non-
persistent contacts cannot be immediately related to previously
created acoustic contacts in this way, but only indirectly by
searching body-parent relationships. The situation is
complicated by possibly having several contacts per 'visible'
contact as well as several visible contacts per pair of bodies.

To update each acoustic contact we require the speed of
each body relative to the contact point, and the relative speed
of the bodies at the contact point, [3]. The velocities of the
bodies at the contact point can be found from a simple
kinematic calculation, once their angular velocities and
positions are queried from the dynamics engine. The contact
velocity is more tricky. One way is to calculate it roughly by
numeric differentiation of the contact position, which is readily
available if the dynamic contacts are persistent. Direct
calculation is possible, if the surface curvatures are known, and
three limiting cases can be distinguished; flat, curved and
point. For instance a point against a flat surface has one
contact-relative-to-body speed zero and the other equal to the
relative-speed-between-bodies-at-contact: there is no 'rolling'.
For a sphere against a flat surface, the contact velocity can be
found from the relative rotation of the flat surface about the
centre of curvature, found from angular velocities, and
similarly for curve-curve contacts. Clearly, tracking surface
curvature adds extra complexity, which could be modest for
objects with uniform curvature, but considerable for general
spline-like objects.

Integration is perhaps the thorniest topic in this paper, and
shows the importance of considering how the different sub-
systems will fit together from the outset. Contact non-
persistence is good enough for feeding the dynamics engine,
but not so good for the ASM: Good quality audio modeling
requires more refined data structuring from the collision engine
than may be available.

5. CONCLUSIONS

The acoustic scene manager described has been realized, and
performs robustly and efficiently. It opens up many
possibilities for creating varied and dynamic interactive
acoustic worlds, and lays an expandable framework for
incorporating new sound models.

The performance of the system is difficult to characterize
briefly since there are so many possible configurations. To give
an idea, on a desktop PIII 600MHz computer each active body
with a 15-mode modal resonator consumes about 1% cpu time,
including surface interactions. This means it is possible to have
a rich mixture of acoustic interactions in one scene, while still

Proceedings of the 2002 International Conference on Auditory Display

ICAD01-7

providing sufficient cpu time for dynamics and collision.1 Since
processors at least four times faster than this are already
becoming available, cpu speed is no longer a serious
constraint.

Models for sound spatialization have not been discussed.
Existing methods can be incorporated with ease by processing
individual resonator outputs according to positional
information available to the controller. For spatializers that
allow control of apparent object width, this can be related to
the physical size of the object in the dynamics engine.

The biggest challenge facing the designer of modelled
audio for interactive worlds is to ensure the smooth integration
of the audio component with the dynamics and collision
components. Because audio is necessarily a secondary
consideration to dynamics and graphics, some ingenuity may
be required when working within existing systems to achieve
good results.

Future developments include generating more specific
surface and resonator models, such as stochastic-granular
surfaces and perceptual resonators. The general structure could
be expanded so that vibrations could be passed between
objects without contact interactions. For instance in a car
model, engine vibrations could be transmitted to a distorted
resonator representing the body, hence causing characteristic
buzzing.

6. REFERENCES

[1] J.K. Hahn, J. Geigel, J.W. Lee, L. Gritz, T. Takala, and
S. Mishra, "An Integrated Approach to Sound and
Motion", Journal of Visualization and Computer
Animation, Volume 6, Issue No. 2, pp. 109-123.

[2] K. van den Doel, “Sound Synthesis for Virtual Reality
and Computer Games” , PhD thesis, University of
British Columbia, 1998

[3] K. van den Doel, P.G. Kry and D.K. Pai,
“FoleyAutomatic: Physically-based Sound Effects for
Interactive Graphics Simulation and Animation” ,
Computer ACM SIGGRAPH 01 Conference
Proceedings.

[4] J.F. O'Brien, P. R. Cook, G. Essl, "Synthesizing Sounds
from Physically Based Motion." The proceedings of
ACM SIGGRAPH 2001, Los Angeles, California,
August 11-17, pp. 529-536.

[5] H. Fouad, J. A. Ballas, D. Brock, "An Extensible
Toolkit for Creating Virtual Sonic Environments"
Proceedings of the International Conference on
Auditory Display, Atlanta, Georgia, USA April 2-5,
2000.

[6] L. Savioja, J. Huopaniemi, T. Lokki, R. Väänänen, "
Virtual Environment Simulation Advances In The Diva
Project", Proc. Int. Conf. Auditory Display (ICAD96),
Palo Alto, California, USA, Nov. 4-6, 1996, pp. 111-
116.

[7] R. Bargar, F. Dechelle, I. Choi, A. Betts, C.
Goudeseune, N. Schnell, O. Warusfel, " Coney Island:
Combining jMax, Spat and VSS for Acoustic
Integration of Spatial and Temporal Models in a

1 The topple demo at www.zenprobe.com/pub
demonstrates this.

Virtual Reality Installation", Proc. 2000 International
Computer Music Conference, Berlin.

