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So-called “coincident” microphone arrays are often used for recording stereo
or surround sound. Experience has shown that two of the main causes of poor
image localisation and of spurious secondary images are: (i) the usual capsule
spacing of 3 to 10 cm, and (ii) poor polar diagrams and polar phase responses in
the treble. These defects also cause a significant degradation in the tonal quality
if a stereo or surround sound recording is mixed down to mono or matrixed either
to modify the recording’s stereo effect or for 2-channel quadraphonic encoding.

Because there are practical limits on the smallness of low-noise directional
microphone capsules, it has not hitherto been possible to design precisely co-
incident microphone arrays. Such precise coincidence (ideally to better than 5
mm) is necessary whenever signals are to be mixed or matrixed, in order to avoid
high-frequency cancellation effects. We describe the use of a tetrahedral array of
capsules with electronic spacing compensation to ensure effective coincidence of
all outputs.

Let the polar diagram of an individual capsule in an array (with respect to the
capsule’s notional centre) bef (x,y,z), where(x,y,z) are the direction cosines of
the direction from which a sound arrives, with the x-axis forward, y to the left
side, and z upward, and withx2 + y2 + z2 = 1. It is not widely realised that in
absolute physical terms, there is no such thing as the “position” of a capsule. If a
capsule has its notional centre at the coordinates(u,v,w), then its polar diagram
relative to the origin of coordinates at angular frequencyω is

f (x,y,z)exp( j(ux+vy+wz)ω/c) (1)
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wherec is the speed of sound (340 m/s) and the factor multiplyingf (x,y,z) is
simply a time delay due to the extra distance−(ux+vy+wz)/c travelled by the
sound.

Thus if we have an array ofn capsules with polar diagramsfi(x,y,z) relative
to their notional centres (fori = 1,2, . . .n), and whose notional centres have co-
ordinates(ui ,vi ,wi), then we may compute the effective polar diagram given by
an output consisting of the various individual capsule outputs added together with
respective frequency-dependent gainsgi(ω). This polar diagram is given by (1) to
be:

∑gi(ω) fi(x,y,z)exp[ j(uix+viy+wiz)ω/c] (2)

In principle, one may use (2) to design arrays and frequency-dependent matrixing
circuits to give outputs with any desired coincident polar diagramsF(x,y,z).

In practice, the following problems arise: (i) For a 4-capsule 4-output array,
one has to design 16 different frequency responsesgi(ω). (ii) Even if the actual
polar responsesfi(x,y,z) of capsules close together were known exactly, the ap-
proximation given by (2) to the desired polar responses from so few capsules may
even at best be a poor approximation unless the shape of the array is carefully cho-
sen. (iii) The polar diagramfi(x,y,z) will depart from its theoretical form in a not
entirely predictable manner, and one then has the impossible task of ’tweaking’
16 complex (in both senses) frequency responses to get the (unknown) best match
to the desired polar diagrams.

We have solved these problems as follows. We assume that the capsules are
axially symmetric, and lie on a sphere with the axes pointing outward from the
centre. We first consider an idealised “spherical microphone” uniformly covered
with many capsules. Each spherical harmonic polar diagramφ(x,y,z) is derived
by adding the outputs of all capsules with respective gainsφ(X,Y,Z) for the cap-
sule in the direction(X,Y,Z). Using Schur’s lemma from the theory of group
representations [1], one may show that for ideal spherical microphones, no matter
what their radius or capsule polar diagram, there isnocross-talk between different
spherical harmonic outputs thus derived, and that all spherical harmonic outputs
of the same order require precisely the same frequency response correction for a
flat response. Thus, when only omnidirectional and figure-of-eight outputs (i.e.
0th and 1st order) are derived, only two frequency responses, one for each order,
require empirical adjustment to account for departures from theoretical behaviour,
rather than 16.

One may show that the best practical approximation to a “uniform covering”
of the sphere with few capsules is obtained by placing them at the points of an
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“efficient” numerical integration rule for the sphere surface [2], [3], giving them
respective gains equal to the “weights” of the relevant rule. The simplest such
array is a regular tetrahedron, giving omnidirectional and three orthogonal figure-
of-eight outputs. The general scheme of the array is shown in fig. 1. Analysis
shows that the omni output is contaminated by spurious polar responses of or-
der≥ 3, and the figures-of-eight by spurious responses of order≥ 2. Denoting
nth order spherical Bessel function [4] byJn(x), we have from [5] the following
mathematical result:

exp( jkx) =
∞

∑
n=0

jn(2n+1)Pn(x)Jn(k) (3)

Since thenth degree Legendre polynomialPn(x) is, as a function of(x,y,z) an
nth order spherical harmonic, we may substitute (3) into (2) to compute that the
frequency responses of the 0th and 1st harmonic components of the nominally zero
and first harmonic outputs of a tetrahedral array of cardioids are respectively:

J0(ωr/c)+ jJ1(ωr/c) (zero’th order)
1
2J0(ωr/c)+ jJ1(ωr/c)− 2

3J2(ωr/c) (first order)

}
(4)

wherer is the distance of the effective centres of the cardioid capsules from the
array centre.

Above a limiting frequencyF ≈ c/πr = 10.8/r kHz (r in cm), the polar di-
agrams become severely contaminated by higher order spherical harmonics, and
it is found best to equalise the nominal omni and figure-of-eight outputs for an
approximately flat response to homogeneous random sound fields. Calculations
show that before any equalisation, the omni and figure of eight outputs from a
regular tetrahedral array of cardioids withr = 1.47 cm have frequency responses
in random sound fields as shown in fig. 2. This should convince sceptics of the
fallacy of assuming that “nearly coincident” is good enough. In order to ensure
perfect coincidence below the limiting frequency, the phase responses should also
compensate for those in equ. (4).

Designs involving all capsules being in one plane [6] cannot give good polar
diagrams in other than horizontal directions. Since most of the incident sound
will be non-horizontal, this would tend to give a colored sound quality in the
reverberant surroundings in which a coincident microphone is likely to be used.

Prototype microphones have been constructed as a part of the development
program for the N.R.D.C. ambisonic system of surround sound. The microphones
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are effectively coincident up to about 7 kHz and are subjectively well behaved
above that. Trial recordings show a stability and lack of ambiguity of 4-speaker
sound localisation much superior to the best stereo, even for non-central listen-
ers and for sounds at the sides. A control unit for mixing microphone outputs
down to mono, stereo or quadraphonics has been designed. This permits one to
record the information from the microphone onto 4-channel tape, and to select
any desired stereo coincident microphone technique (including adjustable angle
of vertical tilt) at any later time. For the first time, this allows a full mixdown
capability off coincident microphones. This, of course, is only practical because
the microphones are, in effect, precisely coincident.
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Figure 1: Schematic of tetrahedral microphone array with precisely coincident
outputs.

Figure 2: Random-incidence frequency response of the omni and figure-of-eight
output from a regular tetrahedral array of cardioids withr = 1.47 cm.
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