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ABSTRACT
A new algorithm to find an optimal filter partition for efficient long convolution with low input/output delay is
presented. For a specified input/output delay and filter length, our algorithm finds the non-uniform filter partition
that minimizes computational cost of the convolution. We perform a detailed cost analysis of different block
convolution schemes, and show that our optimal-partition finder algorithm allows for significant performance
improvement. Furthermore, when several long convolutions are computed in parallel and their outputs are mixed
down (as is the case in multiple-source 3-D audio rendering), the algorithm finds an optimal partition (common to all
channels) that allows for further performance optimization.

INTRODUCTION
The direct implementation of the convolution sum in
the time domain has no inherent latency, but its
computational cost - measured as the number of
multiply-add operations - per output sample increases
linearly with the length of the convolving filter [4],
which makes this algorithm impractical for
performing long convolutions in real-time.

On the other hand, frequency-domain single-block
convolution based on the overlap-add or overlap-save
schemes [7] has a cost per output sample that
increases only logarithmically with the length of the
convolving filter. However, this high efficiency

comes at the expense of an input/output delay equal
to at least the impulse response length [4].

A common approach to achieve low latency while
keeping computational cost down is to partition the
convolving impulse response into shorter blocks [1].
The filter can be represented by an equivalent set of
shorter filters in parallel, as represented in figure 1.
Each parallel branch consists of one block of impulse
response, and a delay equal to the time-offset of that
block into the impulse response. Single-block
convolution is performed independently for each
branch, and the branch outputs are overlap-added.
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Figure 1: Long filter partitioned into four blocks
(top), and equivalent parallel structure of four
shorter filters (bottom).

The simplest scheme of this kind consists of a
partition into blocks of uniform length. In this case,
only one FFT on the input is needed for each output
sample block, since single-block convolutions in each
branch use the same block length. If the partition is
made into blocks of different sizes, then one FFT on
the input is needed for each block size.

[4] presents an efficient multiple-block algorithm
based on a particular non-uniform partition into
blocks of increasing size, with shorter blocks heading
the impulse response. This exploits the fact that short
blocks provide low latency, whereas longer blocks
make the convolution less expensive. This additional
degree of freedom makes this scheme generally more
efficient than uniform partition.

However, uniform partition offers room for
performance optimization if the overlap-add is
performed in the frequency-domain. FFT blocks after
spectral multiply can be overlap-added directly in the
frequency domain [2][3], i.e. onto a “frequency-
domain delay line” (FDL), and then only one inverse
FFT needs to be performed for each input FFT. This
algorithm has a convex cost function and the optimal
block size can be obtained by derivation. However,
for long filters the optimal block size is usually too
long compared to acceptable input/output delay
values, and the cost increases dramatically when
block length is shortened.

One solution to this is to partition the filter into two
FDLs, i.e. two sets of uniform-length blocks: a header
FDL of short block size fixed by the latency
requirement, followed by a second FDL of longer
block size to keep cost down. In our paper we show

how to optimize the cost of this algorithm by varying
the block size and number of blocks of the second
FDL, and the number of blocks of the header FDL.
The cost of this “double-FDL convolution” algorithm
remains at much lower levels for short input/output
latencies.

The double-FDL approach suggests that further
performance optimization could be achieved with a
partition into multiple FDLs, i.e. into multiple
segments where each segment consists of a set of
uniform-length blocks, each segment having a block
length larger than the previous segment. The
parameters of this partition scheme are the total
number of FDLs and the block size and number of
blocks of each FDL.

However, for impulse responses several seconds long
and low specified input/output latencies, the number
of possible multiple-FDL partitions is quite large and
it is not trivial how to choose an efficient one.
Performing an exhaustive search over all possible
partitions can be computationally very expensive,
especially when the partition needs to be updated
periodically in order to track variable filter lengths,
and there is little hope that an arbitrarily picked
partition be efficient.

In this paper, we present an efficient algorithm to
automatically find the optimal multiple-FDL partition
that minimizes computational cost of the convolution,
for a given filter length and a specified input/output
delay. The algorithm uses dynamic programming and
allows for optimization of several convolution
channels in parallel, where further performance
improvement can be achieved by downmixing the
channels in the frequency-domain, if the same
partition is used for all channels.

Cost comparisons show that multiple-FDL
convolution, based on the optimal partition found by
our algorithm, is more than twice as efficient as the
non-uniform block convolution algorithm given in
[4].

In the following sections we present a cost analysis of
the main frequency-domain block convolution
schemes, and then describe how to find the optimal
partition for the multiple-FDL scheme.

COST ANALYSIS OF FREQUENCY-DOMAIN
BLOCK CONVOLUTION ALGORITHMS
In the following cost analysis, we assume that the
Discrete Fourier Transform is computed using the
FFT algorithm. The cost to compute a N-point real
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FFT is assumed to be of the form k.N.log2(N), where
k is a proportionality constant that depends on the
particular FFT implementation available. We will
measure computational cost as number of multiply-
adds ("madds") per output sample, and designate it by
Osymbol where symbol designates the particular
algorithm measured. The FFT of the impulse
response can be pre-computed and thus is not taken
into account in the cost calculations.

Single-Block Convolution
For an impulse response of N points, both the
overlap-add and the overlap-save schemes [7] need to
calculate FFT blocks of 2N points in order to avoid
time-aliasing in the output block. At each block
operation, N new output samples are generated, since
the rectangular window on the input signal slides N
samples at a time. The cost per output sample is then
obtained by normalizing the cost of a block operation
by N. The cost of the direct FFT is:

OFFT = k (2N) log2(2N) / N = 2k log2(2N)

The resulting FFT block of N complex points is then
multiplied by the FFT block of the impulse response.
This spectral multiply requires N complex
multiplications, or 4N real multiply-adds:

OSpecMult = 4N / N = 4

The FFT-1 on the resulting block has the same cost as
the direct FFT on the input signal. In the overlap-add
scheme, an additional cost of N adds (i.e. one
add/sample) is necessary to overlap-add the first N-
point half of the 2N-point output block, while
overlap-save just saves the second N-point half of the
2N-point output block. We will use the overlap-save
scheme in the rest of this document. Then, the cost of
single-block (SB) convolution is:

OSB(N) = OFFT+OSpecMult+OFFT-1 = 4k log2(2N) + 4

For a typical value of k=1.5, we can verify that
single-block convolution is less costly than direct-
sum time-domain convolution for N ≥ 64 points.

Multiple-Block Convolution with Uniform
Partition
In this scheme, the filter impulse response of length T
is partitioned into blocks of same length N. For
simplicity, let's suppose N is an integer power of two
and T/N is an integer (the impulse response can be
zero-padded as necessary to satisfy this condition).

To generate an output block, only one 2N-point direct
FFT is necessary since all blocks in the partition have
same length. Then, a spectral multiply and a 2N-point
inverse FFT are performed for each of the (T/N)
blocks in the partition, and the resulting (T/N) sample
blocks are overlap-added with the corresponding
delays onto the output buffer. Therefore, the total cost
of multiple-block with uniform partition convolution
(MBUP) is:

OMBUP(N) = OFFT + (T/N) (OFFT-1 + OSpecMult + OOvAdd)

= 2k log2(2N) + (T/N) [2k log2(2N) + 4 + 1]

= 2k log2(2N) (1+T/N) + 5 T/N

A plot of this equation (Figure 2) shows that, for a
given filter length T, the cost varies monotonically
with respect to the input/output latency N. Reducing
N comes at the expense of increased cost, the
minimum cost being achieved with no partition at all
(i.e. single-block convolution).

Multiple-Block Convolution with Non-
Uniform Partition
In this case two possible partition schemes are used
[4]: a minimum-cost algorithm uses a partition into
(I+1) blocks of size

N, N, 2N, 4N, 8N, …, 2(I-1)N

Another algorithm, designed to achieve uniform
processor load, partitions the filter into (2I) blocks of
size

N, N, 2N, 2N, 4N, 4N, ..., 2(I-1)N, 2(I-1)N

When null input/output delay is desired, [4] uses
direct-sum convolution in the time-domain for the
header block of length N. For fair comparison with
the other partition schemes in this paper, we will use
frequency-domain single-block convolution instead,
which is typically cheaper for values of N equal or
greater than 64 samples.

The minimum-cost algorithm can be seen as a
superposition of single-block convolutions for the
block series N, 2N, 4N, 8N, …, 2(I-1)N, plus the
additional spectral multiply and inverse FFT
corresponding to the header block of length N (that
shares the input direct-FFT with the second block,
also of length N). Therefore, the cost of this
algorithm (denoted by symbol MBMC) is:
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Multiple-Block Convolution with Uniform
Partition, using a Frequency-Domain Delay
Line (FDL): Single-FDL Convolution

When the block partition is uniform, i.e. all blocks
have the same length, then all delays in the branches
of the equivalent parallel filter structure (Figure 1) are
integer multiples of the block size. Thus the blocks
that are overlap-added in the time domain are aligned,
that is, the output block of branch i at time frame k
has a 100% overlap with the output block of branch
(i-1) at time frame (k+1). Consequently, the overlap-
add procedure can be implemented directly in the
frequency domain after the spectral multiply
operation is performed on each branch [2], and only
one inverse FFT is needed, as opposed to one inverse
FFT per branch.

To generate an output block we must start by
computing one 2N-point direct FFT on the input
signal. Then, a spectral multiply and an overlap-add
operation are performed for each of the (T/N) blocks
in the partition. These two operations can be

combined into 4 real multiply-adds per FFT bin.
Finally, one 2N-point inverse FFT is computed on the
block coming out of the FDL. The total cost of the
single-FDL convolution algorithm is then:

OSingleFDL(N) = OFFT + OFFT-1 + (T/N)(OSpecMultOvAdd)

= 4k log2(2N) + 4(T/N)

As this cost equation shows, for a given filter length
T the cost of the single-FDL algorithm does not
necessarily vary monotonically in the interval
N=[2,T], but can have a minimum for a value of N
smaller than T. This happens because the FFT cost
dominates for large values of N, while for small
values of N the cost of the spectral multiplies
becomes predominant.

We can calculate the optimal block length by relaxing
the integer-power-of-two constraint on the variable N,
allowing it to take any value on the positive real
scale, setting the derivative of the cost with respect to
N to zero, and solving for N. This yields the optimal
value:

Nopt = T . ln(2) / k

= T . 0.6931 / k

where ln(.) is the natural logarithm. The optimal
block size can be obtained by inspection, by
evaluating the cost function on the immediate inferior
and superior integer-power-of-two values around Nopt,
and picking the one for which the cost is minimum.

As an interesting remark we observe that, even when
input/output latency is not an issue, partitioning the
impulse response may still be desirable if the FFT
implementation available is not very efficient (i.e. if k
is significantly larger than ln(2)).

Finally, if parallel convolutions are to be computed
on P different sound sources, and their outputs mixed
down, the mix can be done in the frequency domain
and only one inverse-FFT after mix down is
necessary. In this case the cost per convolution
channel (and per output sample) would be:

OSingleFDL(N) = OFFT + (1/P)OFFT-1+ (T/N)OSpecMultOvAdd

= (1+1/P) 2k log2(2N) + 4(T/N)
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Double-FDL Convolution
Although the single-FDL algorithm allows for
significant performance improvement over the
multiple-block algorithm with uniform partition
(MBUP), its cost curve still grows dramatically when
N decreases from its optimal value. When short
input/output delay (and therefore small block length
N) is required, the algorithm works far away from
optimality and can still be too expensive. For
example, if the latency specification required N=128
and the filter length were T=65536, then the cost
would be of 2096 madds (assuming k=1.5), whereas
the cost for N optimal (N=32768) is of 104 madds.

One solution to this is to partition the impulse
response into two FDLs: a header FDL of short
blocks to satisfy the latency requirement, followed by
a second FDL of longer blocks to minimize the cost.
The latency requirement fixes N, i.e. the block length
of the header FDL. The block length of the second
FDL, which we will call B, is the variable that allows
us to minimize the cost for a given latency N and
filter length T. For simplicity, we constrain both N
and B to be integer powers of two. According to the
cost formula for a single FDL, the cost of this
algorithm is then:

ODoubleFDL = 4k log2(2N) + 4 B/N

+ 4k log2(2B) + 4 (T/B–1)

were the two first terms correspond to the header
FDL, and the two last terms to the second FDL.
We can calculate the block length B that minimizes
this cost using the same procedure of relaxation,
derivation and rounding as in the previous section.
The solution for the optimal value of B (before
rounding) is:

B = - k N / [2 ln(2)] + sqrt( {k N / [2 ln(2)]}2 + T N )

where sqrt(.) denotes the square-root function. Figure
2 shows a cost comparison plot between multiple-
block with uniform partition (MBUP) and the FDL-
based algorithms.

Figure 2: cost (in log scale) of multiple-block with
uniform partition (MBUP) algorithm, and single-
FDL and double-FDL algorithms, for different
input/output delays N, a filter length of 131072 taps,
and k=3/2.

Multiple-FDL Convolution
In the double-FDL partition, the first FDL’s role is to
satisfy the latency requirement while the second FDL
minimizes the computational cost. The cost is
minimal for that particular scheme, i.e. under the
constraint to use only two FDLs.

Intuitively, we can see that relaxing that constraint
could lead to further optimization. We can generalize
the double-FDL partition into a totally flexible
scheme consisting of a multiple number of FDLs
[2][3].

Figure 3: Non-uniform partition of an impulse
response lf length T into four FDLs of block lengths
N1, N2, N3 and N4 respectively.

For relatively short filter impulse responses (e.g. a
few thousand of samples for adaptive filters [2]) the
partition that minimizes computational cost can be
found by inspection or exhaustive search. However,
in applications such as reverberation or 3-D audio
rendering, impulse responses several seconds long are
common, and exhaustive search might not be viable.
An efficient optimization procedure is therefore
necessary.
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For example, for a typical 3-second reverb impulse
response at a 44.1HKz sample rate and a latency
specification of 5.8 milliseconds (256 samples) there
are 70,055,503 possible partitions. Using a typical
FFT implementation (k=1.5), the cost per output
sample ranges from 308 madds for the optimal
partition to 2402 madds for the least-efficient
partition. A trivial partition into a single FDL of 256-
point blocks has a cost of 2122 madds. This suggests
that an arbitrarily picked partition is not likely to be
efficient, and performing an exhaustive search over
all (70,055,503) possible partitions can be
computationally very expensive, especially when the
partition needs to be updated periodically in order to
track time-varying filter lengths.

This leads us to consider more efficient ways of
finding a good partition. For a given filter length T
and specified input/output delay N, the multiple-FDL
scheme poses an interesting cost optimization
problem where the variables are:

1. The number of FDLs the filter is partitioned into.
2. The block length of each FDL except for the

header FDL (whose block length is N).
3. The number of blocks of each FDL including the

header FDL.

We present in the following sections a dynamics-
programming algorithm we have designed to
automatically find the most efficient partition for the
multiple-FDL scheme, given the filter length T and
the desired input/output delay N.

OPTIMAL PARTITION FINDER ALGORITHM
In order to solve the optimization problem using
dynamics programming, a partition is represented as a
sequence of states [5]. The state sequence that
represents the optimal partition is found using the
Viterbi algorithm. For a description of this well-
known algorithm we refer the reader to [5][6].

The challenge in the design of the optimal-partition
finder algorithm resides in defining the states and
state transition costs in terms of the problem
variables. Once states and transition costs are defined,
the rest (i.e. the Viterbi algorithm) is a mechanical
procedure that consists of evaluating partially-optimal
state sequences of gradually increasing length, and
finally backtracking through the optimal sequence
[5][6]. In the following paragraphs we present the
design of our optimal-partition finder algorithm.

States
The state sequence is defined over a set of uniformly-
spaced samples along the filter impulse response of
length T. This set of samples is given by n = t.N, with
t integer and non-negative, and where N - an integer
power of 2 - is the specified size of the header block
in the partition (i.e. the input/output delay).

Let's consider a pointer moving through the set of
samples n = t.N with t = 0, 1, 2, …, T/N-1; at each
position t (i.e. each stage of the state sequence) we
will consider all possible states of the partition. For a
given position t, the state is defined by the following
two parameters:

1. The size of the block the pointer falls within (e.g.
a block of 4N points).

2. The fraction of the block the pointer points to
(e.g. the third quarter of a 4N-point block).

We will denote the state as [S.Q] with S and Q
positive integers, indicating that the pointer falls at
the beginning of the Qth N-point fraction of a block of
size SN. For example, a state noted [4.3] indicates
that the pointer falls at the beginning of the 3rd quarter
of a block of size 4N.
The following constraints must be respected in order
to determine the possible states and possible
transitions between states:

1. Block sizes must be integer powers of two.
2. A block of size S cannot start before the Sth

sample into the filter impulse response [4].
3. A block of size S can only be followed by a

block of size equal or greater than S.

Figure 4 shows all possible blocks and the
corresponding state IDs at each pointer position, for a
filter impulse response of length T=8N.

State-Transition Costs
For each pointer position t, we evaluate:

1. All possible states at the current position
2. All possible state transitions from states at the

previous position (t-1) to the current position,
and the cost of these transitions.
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Figure 4: All possible blocks and the corresponding
state IDs at each pointer position, for a filter impulse
response of length T=8N.

State transition costs represent computational cost,
and are defined as follows:

1. A transition into a block of greater size, i.e. from
a state [X.X] into a state [Y.1] where Y>X, is a
transition into a new FDL. Thus, its cost is that of
one direct FFT, one spectral multiply-add and
one inverse FFT:

cost(X.X->Y.1; Y>X) = 4k log2(2YN) + 4

2. If P convolutions are performed in parallel, only
one inverse FFT is performed for all parallel
channels, and this cost becomes:

cost(X.X->Y.1; Y>X) = (2+2/P) klog2(2YN) + 4

3. In the special case where Y=2X, previously-
computed half-sized spectra can be used as
described in [1] (roughly dividing the direct-FFT
cost by a factor of two), and the transition cost
becomes:

cost(X.X->Y.1; Y>X) = (1+2/P) klog2(2YN) + 4

4. A transition from the last fraction of a block into
another block of equal size means that the current

FDL is appended one more block. Thus, its cost
is that of one spectral multiply-add:

cost(X.X->X.1) = 4

5. A transition between subsequent N-point
fractions of the same block has no cost:

cost(X.Q->X.(Q+1); Q<X) = 0

Figure 5 shows the representation of states and state
transitions used by our algorithm, showing which
transitions are viable.

Figure 5: states and state transitions for a filter
length T=8N.

Viterbi Algorithm
At each stage in the state sequence, i.e. for each
position of the pointer t = 0, 1, … T/N – 1, and for
each state at position t, we compute a partial
accumulated cost δt(i) and an index Φt(i), where i is
an index identifying the state.

For the initial position t=0 only one state is possible,
i.e. state [1.1], since the partition is constrained to
start by a block of length N in order to satisfy the
input/output latency specification. The accumulated
cost for that state, of index i=0, is:

δ0(0) = 4k log2(2N) + 4

For subsequent positions t = 1, 2, … T/N – 1, the
values of δt(i) and Φt(i) are computed as:

δt(i) = min[δt-1(j) + costji]
j

Φt(i) = argmin[δt-1(j) + costji]
j

where index i parses all states at position t, index j
parses all states at position (t-1) that can transition
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into state i at position t, and costji denotes the
computational cost associated with that transition,
calculated as described in the previous section.

Finally, the optimal state sequence it (i.e. optimal
state index i for each position t) is found by
backtracking through the indexes Φt(i) starting from
the state for which the accumulated cost δt(i) is
minimum at the last position t = T/N–1:

iT/N-1 = argmin[δT/N-1(i)]
i

and

it = Φt+1(it+1)

for t = T/N-2, T/N-3, …, 0.

For example, the optimal state sequence identified by
the indexes it could look something like:

[1.1][1.1][1.1][2.1][2.2][2.1][2.2][4.1][4.2][4.3][4.4]
[4.1][4.2][4.3][4.4],

representing a partition into three FDLs, consisting of
three blocks of N points, two blocks of 2N points and
two blocks of 4N points respectively. In practice, of
course, the algorithm deals with much longer state
sequences.

RESULTS
Figure 6 shows a plot of the cost of the multiple-FDL
algorithm, when the optimal partition found by our
algorithm is used. For comparison, plots of the
double-FDL algorithm and of the multiple-block with
non-uniform partition algorithms [4] (which perform
the overlap-add in the time domain) are provided.

Figure 6: Cost curves for different input/output
delays, showing the performance of the multiple-
block with non-uniform partition algorithms [4]
denoted MBUL and MBMC, the double-FDL
algorithm, and the multiple-FDL algorithm using the
optimal filter partition determined by our partition
finder. The filter length is 131072 taps.

Figure 6 shows that the performance improvement of
the multiple-FDL algorithm when using an optimal
partition can be quite significant, in comparison with
the other partition schemes. In particular, we see that
the multiple-FDL algorithm is more than two times
more efficient than the multiple-block with non-
uniform partition algorithms MBMC and MBUL
presented in [4].

As an illustrative example, for an impulse response
131072 samples long (almost 3 seconds at a sample
rate of 44.1KHz), with a specified input/output
latency of 5.8 milliseconds and a typical FFT
implementation with a cost constant k=1.5, the
optimal partition found by our algorithm consists of
three FDLs: 8 blocks of 256 samples, 7 blocks of
2048 samples and 7 blocks of 16384 samples
respectively. The computational cost per output
sample of the multiple-FDL algorithm using this
optimal partition is of 304 multiply-adds. If the same
convolution were performed using a single block of
131072 samples (a very impractical FFT size, and a 3
sec latency) the cost would be of 112 multiply-adds.
The uniform partition (MBUP) algorithm would cost
16411 madds, and the single-FDL algorithm 2102
madds per output sample. The algorithms given in [4]
would cost 769 madds for the minimum-cost version
(MBMC), and 964 madds for the uniform-load
version (MBUL).
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