Gli scambiatori di calore, sono apparecchiature utilizzati al fine di favorire il trasferimento di energia (sotto forma di calore) tra due fluidi a temperature diverse. Possiamo schematizzare uno scambiatore di calore, come un sistema di questo tipo:
in cui il fluido A, viene detto fluido di processo e il fluido B viene detto fluido di servizio.
In particolare, avremo scambiatori con e senza contatto tra i due fluidi:
- se il fluido di servizio è “sporco” rispetto al fluido di processo, sarà necessario evitare il contatto tra i due. E’ il caso di diversi processi alimentari, in cui si deve evitare la contaminazione del prodotto. I due fluidi sono separati da una “parete” che ne evita il contatto chimico.
- se il fluido di servizio non è “sporco” rispetto al fluido di processo, A e B possono venire in contatto. E’ il caso per es. del processo di pastorizzazione del latte, in cui il vapore ad alta temperatura si mischia al latte per sterilizzarlo, per poi separarsi nuovamente, una volta finito il processo.
Per quanto riguarda gli scambiatori che evitano il contatto tra i due fluidi, studieremo il modello più semplice ed immediato: lo scambiatore tubo in tubo. Per quanto riguarda invece gli scambiatori a contatto tra i fluidi, non verrà fatta alcuna trattazione, poiché lo studio di tali apparecchiature è notevolmente più complicato.
Sono costituiti da due tubi concentrici, in cui passano due fluidi a temperature diverse. Possiamo schematizzare questa apparecchiatura in questo modo:
Il tubo interno dovrà essere fatto con materiali ad alta conducibilità termica, per consentire uno scambio più alto possibile di calore tra i due fluidi: si userà quindi in generale un metallo ad altissima conducibilità, per es. l’acciaio che offre inoltre un’alta resistenza all’usura. In particolare con l’acciaio inox (lucidato) diventa particolarmente semplice anche la pulizia della parte interna del tubo (in cui passa il fluido A), diventando particolarmente indicato nei settori in cui l’igiene è un fattore determinante (industria alimentare). Per quanto riguarda il tubo esterno, non si ha alcuna necessità perché questo sia fortemente conduttivo, per cui si useranno metalli a bassa conducibilità termica (anche se non necessariamente un isolante). Nel nostro caso lo considereremo isolante: questo ci permetterà di non considerare perdite all’esterno nello scambio energetico.
Questo tipo di scambiatore, presenta un’estrema facilità di calcolo per quanto riguarda il dimensionamento delle superfici di scambio e della quantità di calore scambiato, per cui ne permette il calcolo esatto delle caratteristiche. Tuttavia risulta essere molto costoso (acciaio inox lucidato) ed ingombrante rispetto alla potenza termica dissipata. E’ quindi vantaggioso solo in quei settori in cui è necessaria un’estrema pulizia (settore alimentare e farmaceutico) ed affidabilità, e in cui il valore aggiunto del prodotto copra in breve termine il costo dell’impianto.
A seconda che il fluido B sia entrante o uscente dalla sezione B-1 (considerando il verso positivo dell’asse X come indicato in Fig. 2), avremo scambiatori detti in Equicorrente (ovvero A e B hanno lo stesso verso di percorrenza dei tubi) oppure in Controcorrente (ovvero B scorre in verso opposto ad A: entra alla sezione B-2 ed esce alla sezione B-1). Come vedremo ognuna delle due soluzioni, presenterà caratteristiche diverse ed utili ad applicazioni diverse.
Per quanto riguarda il calcolo degli scambiatori, occorre distinguere il
(dimensionamento delle superfici di scambio)
Calcolo energetico
(relazioni del I° principio della termodinamica)
(nel calcolo energetico, consideriamo la pressione praticamente costante, ovvero liquidi incomprimibili).
Mentre il calcolo energetico è dato semplicemente dal bilancio dell’entalpia (tanto calore cede un fluido, tanto l’altro ne riceve), il calcolo termico è più articolato (si devono calcolare le resistenze termiche, i coefficienti di convezione e il funzionamento delle superfici di scambio).
Consideriamo uno scambiatore in equicorrente, in cui il fluido A è a temperatura di ingresso al sistema, più bassa del fluido B, e analizziamo il tratto di lunghezza L, tra la sezione A1 e A2, come mostrato in Fig. 1. Avremo, in un diagramma che lega la temperatura alla distanza dall’ingresso del sistema, una situazione di questo tipo:
Notiamo un DT variabile, ovvero avremo un flusso termico fortemente variabile: in particolare, alla sezione 1, essendoci un DT= DT1 grande, il flusso termico tra i due fluidi sarà piuttosto vivace, mentre alla sezione 2, poiché il DT= DT2 è molto basso, il flusso termico sarà quasi nullo.
Data la natura così variabile di DT, siamo costretti, nello studio della
potenza scambiata
Consideriamo uno “scambiatore” infinitesimo di lunghezza δx, all’interno del quale possiamo ritenere l’andamento di ΔT praticamente lineare. Ottengo quindi una relazione, alla coordinata x:
in cui RTot rappresenta la resistenza termica dello scambiatore infinitesimo e che possiamo rappresentare in questo modo:
Fig.
4
in cui: λ è la conducibilità termica del materiale con il quale è costruito il tubo interno,
hi è il coefficiente di convezione interno,
he è il coefficiente di convezione esterno,
L è la lunghezza dello scambiatore considerato, in questo caso δx.
La resistenza totale RTot è la somma dei tre termini (poiché la lunghezza dello scambiatore è infinitesima, si ottiene rapidamente che la resistenza termica risulta infinita).
Definiamo ora il coefficiente globale di scambio K in relazione alla superficie di scambio S come:
in cui K è strettamente legata alla superficie in cui avviene lo scambio S.
Possiamo quindi scrivere la RTot per
unità di superficie come:
per cui otteniamo:
e conseguentemente:
ovvero il
Esprimiamo ora il
da cui otteniamo:
ovvero, facendo la differenza tra i due termini:
e per le proprietà della derivata :
in cui compare ancora il termine [TB-TA].
Sostituendo nell’equazione (8), la relazione (12) ora trovata, otteniamo:
ovvero un’equazione differenziale a variabili separabili:
Integrando il primo membro tra la sezione 1 e la sezione 2, e il secondo membro su tutta la lunghezza dello scambiatore, tra 0 ed L, otteniamo:
Poiché però si vuole arrivare ad un’espressione del tipo:
ricaviamo il termine
Dalle espressioni (2) e (3), si può facilmente ricavare:
per cui la (17) diventa:
Sostituendo in (16) :
ovvero l’espressione che cercavamo per il
in cui i vari
Notiamo che nello sviluppo del modello di
Consideriamo ora uno scambiatore in controcorrente, schematizzabile in questo modo:
poiché l’entrata del fluido B avverrà alla sezione 2, dove invece il fluido A esce, avremo una situazione di questo tipo:
in cui notiamo che il ΔT rimane lungo tutto il tragitto, quasi costante, variando poco tra 0 ed L.
Passando al calcolo del
Negli scambiatori di calore in controcorrente,
avremo, a parità delle quattro temperature di ingresso ed uscita dei due
fluidi, un
Questo, dalla (16) (K non è influenzato
dalla corrente dei fluidi e
Si deve però considerare la bassa variazione di ΔT lungo il percorso: se da un punto di vista termodinamico questo potrebbe sembrare un vantaggio (poca perdita di energia), dal punto di vista dello scambio termico, questo significa avere uno scambio meno vivace, ovvero una maggiore lentezza nel cambiamento di temperatura del fluido di processo. Negli scambiatori in equicorrente, il forte ΔT iniziale, consente un brusco cambio di temperatura iniziale del fluido A, portandolo subito ad una temperatura più bassa [alta] in breve tempo.
In situazioni critiche (dove cioè si deve interrompere velocemente un processo termico, per es. per interrompere un processo di pastorizzazione) si useranno più scambiatori in serie: il primo sarà uno scambiatore in equicorrente per cambiare rapidamente la temperatura del fluido A, gli altri in controcorrente, in modo da ridurre spazio e quindi costi.
Si deve raffreddare dell’azoto con dell’acqua, attraverso uno scambiatore di calore tubo in tubo.
L’azoto ha una portata
L’acqua ha una portata
·
Determinare la temperatura dell’acqua in uscita
·
Supponendo che la pressione dell’N2 sia
Lo scambiatore è dimensionato:
in cui: il diametro interno del tubo conduttore misura à Di,1 =101 mm
il diametro esterno del tubo conduttore misura à De,1=108 mm
il diametro interno del tubo esterno misura à Di,2 =125 mm
La temperatura dell’acqua in uscita dal sistema può essere facilmente calcolata utilizzando le relazioni del bilancio di energia. Sappiamo infatti che la potenza termica dissipata dall’azoto, deve essere bilanciata da un assorbimento da parte dell’acqua di un’analoga quantità di energia:
e
Sostituendo otteniamo:
Per la soluzione dovrò usare la relazione
Per il calcolo del coefficiente di scambio :
è necessario ricavare prima i coefficienti di convezione.
- lato azoto:
l’azoto entra ad una temperatura di 200°C ed esce a 50°C è consideriamo una temperatura media pari a 125°C=398K.
Poiché conosciamo il valore di pressione dell’azoto, dalla relazione dei gas perfetti, ricaviamo la densità:
grazie alla quale posso trovare la velocità alla parete:
Posso quindi calcolare il n° di Reynolds:
dal cui valore sappiamo che l’azoto è in regime molto turbolento.
Per ricavare quindi il nostro coefficiente di convezione interna hi dobbiamo ricorrere al numero di Nüsselt secondo l'equazione di Dittus-Boelter che ha validità per i fluidi correnti in tubo in regime turbolento:
- lato acqua:
dobbiamo ripetere le stesse
operazioni, con la differenza che la densità dell’acqua, ritenuta
incomprimibile, sarà
Calcoliamo quindi la velocità dell’acqua:
e quindi il n° di Reynolds:
Poiché il n° di Reynolds è inferiore a 10000, non possiamo utilizzare le relazioni di Dittus e Boelter per trovare il n° di Nüsselt, ma dovrò usare la formula di Böhm:
Ottengo
quindi un coefficiente di convezione
Posso calcolare il coefficiente di scambio, che risulta
Ricordando che la potenza scambiata era
ottengo una lunghezza
in cui non resta che sostituire il valore di
Come ci aspettavamo, il modello in controcorrente è più corto del modello in equicorrente.