	AURORA

REFERENCE MANUAL

VERSION 1.0

november 1997

�
Genesis s.n.c.
�
�INTRODUCTION

Aurora is a complete system to measure impulse responses and through these, auralisations of acoustic anechoic signals.
The system is based upon David Johnston’s “host” Cool Edit and to this it has been added the following ten modules:

Filter .TIM
Convolve with Clipboard
Generate MLS Signal
Deconvolve MLS Signal
Deconvolve IRS Signal
Acoustical Parameters
Inverse Filter
Flatten Spectrum
Subtract Convolved
��iMPORTING FILTER FOR audio FILES IN MLSSA FORMAT (.TIM)

The first implemented module unlike the following ones, doesn’t cause tranformations or analyses upon sound data items which are in Cool Edit graphic window, but has got the aim to get the same Cool Edit to read and write files of sound data in MLSSA format (.TIM).
MLSSA (Maximum Length Sequence System Analyzer) is the best professional analyzer of sound systems, based upon MLS measure technique already present in the market. The system is set up by a software for the MS DOS operating system and by an acoustic card. The sound card has been used by software to produce the excitement MLS signal of the studying process and to obtain a response to the same system. The A/D converter of the card is 12 bits. The system can generate MLS sequences of maximum order like 16 (65535 samples).
Without the hardware card are impossible whether the production or the acquisition of sound signal and in this way isn’t possible to study the impulse response to the environment.
The sound analogic exit of the card has been planned so that you can produce only MLS bipolar sequences. Therefore can’t be used fot the D/A convertion of digital audio signals like, for instance, the impulse response to the environment produced by the same MLSSA system.
The convolution module can realize the listening of the impulse response caused by MLSSA system through a common audio commercial card. At this aim is enough loading in Cool Edit and playing by Cool Edit - Play function like any other audio digital signal. You can notice moreover that when it has been loaded a .TIM file in Cool Edit, the impulse response in this last contained, has been transforming into a 16 bits mono audio signal. An impulse response like this can be saved in a file in any other audio format supported by Cool Edit (for example .WAV or .VOX), using the Save as function of Cool Edit.

The MLSSA format (.TIM)

The sound file created by the MLSSA system consist of, like many other format of sound files, the temporal sequence of signal samples that has been precedeed and followed by structure data containing different information about the same sequence (for instance its length and frequency of samples).
All that makes the MLSSA format singular is that the samples of the sequence are neither integer numbers at 8 or 16 bits nor their equivalent compressed. In .TIM files every sequence sample is represented by a real value float at 32 bits.
The content of a .TIM file is represented by a layout of the following description in C language, in which the sequence of float sample is represented by data[data_length]:

long identification_tag = 0xffffabcd; /* magic number */
int acquisition_algorithm; /* 0=Scope, 1=Correlation, 2=Async-corr. */
float delta_time; /* msecs between data points */
long data_length; /* number of data points */
float data[data_length]; /* time data */
char title[80]; /* title string */
char comment[60]; /* user comment if any */
struct setup; /* file header */

The setup structure which forms the file-tail is the following:

// **
// definizione delle strutture della coda dei files MLSSA
struct colortype
 {
 int graph_end;
 int graph;
 int cursor;
 int highlight;
 int plot;
 int overlay;
 int axis;
 int qc_plot;
 int logo;
 int title;
 int ticks;
 int label;
 int menu;
 int level;
 int overplot;
 int domain;
 int message;
 };

struct mictype
 {
 int number;
 char mfr[13];
 char model[9];
 char serial[9];
 char caldate[10];
 float sensitivity;
 float preamp_gain;
 float db_reference;
 int degree;
 float coefs[8];
 float c1;
 float c2;
 };

struct graph
{
long maxpoints; /* default display length */
long slength; /* length of data */
long cindex; /* cursor index */
long mindex; /* marker index */
long highi; /* right display edge index */
long lowi; /* left display edge index */
float highamp; /* top of display level */
float lowamp; /* bottom of display level */
long sensnum; /* sensitivity level (don't use) */
int crosson; /* 1=crosshair on, 0= crosshair off */
int positionon; /* 1=cursor readout on, 0=cursor readout off */
float deltax; /* point to point X axis spacing */
int style; /* style bit definitions
 bit 0 plot points = 0, lines = 1
 bit 1 move cursor with marker = 1
 bit 2 grid always = 1
 bit 3 overplot on = 1
 bit 4 old autoscale when overplot on */
int logmode; /* 0=linear X axis, 1=log X axis */
char *hunits; /* hoizontal axis units label */
char *title; /* displayed title string */
int autoscale; /* 0=autoscale off, 1=autoscale on */
float hunits_factor; /* horizontal units scale factor */
};

/* Use commented variables only */

typedef struct Msetup
 {
 long fftsize; /* FFT size used for frequency domain */
 int window_type;
 /* 0=rect, 1=full-Hamming, 2=half-Hamming, 3=full-Hann,
 4=half-Hann, 5=full-Blackman-Harris, 6=half-Blackman-Harris */
 float sample_rate; /* sampling rate in kHz */
 float filter_band; /* Antialiasing filter cut-off in kHz */
 float filter_gain; /* Antialiasing filter gain */
 int filter_gain_num;
 long trigger_delay; /* Trigger delay in samples */
 int trigger_type; /* 0=Stimulus, 1=Auto, 2=Extern-minus, 3=Extern-plus */
 int stimulus_type; /* 0=Pulse, 1=Step, 2=MLS */
 long stimulus_period; /* period of pulse stimulus in samples */
 int stimulus_order; /* MLS order 12, 14, 15 or 16 */
 float stimulus_amp; /* Amplitude of stimulus in volts */
 int stimulus_on; /* 0=Burst stimulus, 1=Continuous stimulus */
 long acquire_size; /* Number of samples acquired/displayed */
 int acquire_algorithm; /* 0=Scope mode, 1=Cross-correlation */
 int filter_type; /* 0=Butterworth, 1=Bessel, 2=Chebyshev */
 int printer_type;
 int beeper_on;
 int dc_couple;
 int autorange_on; /* 0=autorange off, 1=autorange on */
 float units_factor; /* Acquisition units scale factor in units/volt */
 char units_label[11]; /* Acquisition units */
 float db_reference; /* Zero dB reference in frequency domain */
 float stim_units_factor; /* Stimulus units scale factor in units/volt */
 char stim_units_label[11]; /* Stimulus units */
 int ratio_mode; /* 0=Normal, 1=Transfer, 2=Impedance, 3=PSD, 4=Response */
 int phase_units; /* 0=degrees, 1=radians */
 int equalize_on; /* 0=No equalization, 1=equalize transform */
 long stimulus_low; /* Low period for step stimulus in samples */
 long stimulus_high; /* High period for step stimulus in samples */
 int print_dir;
 int print_port;
 float print_hmargin;
 float print_vmargin;
 int print_ff;
 int external_clock; /* 0=internal clock, 1=external clock */
 int acquire_cycles; /* Number of pre-average cycles */
 char tunits_label[11]; /* Time axis units */
 float tunits_factor; /* Time axis units scale factor in units/ms */
 char funits_label[11]; /* Frequency axis units */
 float funits_factor; /* Frequency axis scale factor in units/kHz */
 char impedance_units_label[11]; /* Impedance units */
 float series_resistance; /* Series resistance for impedance measurements */
 float equalize_level; /* 0 dB reference for equalization */
 int no_sinc_correction;
 float fcenter; /* Center frequency of digital bandpass filter */
 struct colortype cga_colors;
 struct colortype ega_colors;
 struct graph t;
 struct graph f;
 int print_size;
 int wf_cycles;
 int wf_step;
 int wf_window;
 int wf_logon;
 long wf_fftsize;
 float wf_lowf;
 float wf_highf;
 float wf_risetime;
 float wf_falltime;
 float wf_dbperdiv;
 float foctave; /* octave bandwidth of digital bandpass filter */
 char date_stamp[20]; /* Date stamp of acquisition */
 float dyna_range; /* Dynamic range of acquisition */
 float acquire_delay; /* Delay after GO command */
 char source_name[35]; /* precursor data filename */
 char reference_name[35]; /* reference filename */
 char filename[35]; /* filename of this data if saved */
 int wf_mode;
 int wf_noautofloor;
 float wf_floor;
 int schroeder_correction;
 float sensitivity_impedance; /* load impedance for sensitivity mode */
 struct mictype mic; /* microphone calibration data */
 int spl_mode; /* 1= display dB-SPL when mic data exists */
 float wf_octave; /* energy-time-frequency octave smoothing */
 int preaverage_mode; /* 1= concurrent, 0= alternate */
 long t_delay; /* zero time index */
 float wf_energy_per_div; /* Wigner vertical scale factor */
 float wf_z_axis_offset; /* Waterfall z-axis zero offset */
 float wf_z_axis_delta; /* Waterfall z-axis increment */
 char wf_z_axis_label[11]; /* Waterfall z-axis units */
 int min_phase_accuracy; /* Minimum phase accuracy level */
 float phase_delay; /* phase delay when file is saved delay corrected */
 // long go_average_readings; /* number of readings if Go Average command */
 } setup;

// fine definizione delle strutture della coda dei files MLSSA
// **

Reading and writing of audio files in MLSSA format (.TIM)

The source code of an importing filter for Cool Edit is compounded in a similar way to that of modules which realize generation or transformation of audio signals. The DLL corrisponding to an importing filter of audio files for Cool Edit has got a .FLT extension.
When Cool Edit starts, in its directory is looking for all files with .FLT extension. If it finds some, it performs all checks to insure that these ones are really DLL corrisponding to importing filters of files and in this case, it adds the format present in DLL in the list of those supported.
Cool Edit communicates with DLL through different functions, defined in the File Filters API included in Cool Edit manual.
The peculiar features of .TIM files have complicated a lot the communications between DLL and Cool Edit, in succession are presented some problems that we had to solve during the module - drawing up.
To convert the sequence of float samples (whose range of possible values is +/-(3.4E +/- 38)) in a sequence of whole samples at 16 bits, that is the one requested by Cool Edit in reading time (whose range of possible value is (-32768...32767)), is necessary to know the maximum value of the module of samples of the sequence float. The only way to find out this last is reading the whole sequence and then scanning sample after sample by searching. The sequence should be read and read another time to transfer the values converted into integer number at Cool Edit. To avoid the double reading from the file and making faster the loading of data, the sequence is totally read and stored in a vector. The whole samples are transferred after their necessary conversion into Cool Edit, as far as it’s required, by reading them from the vector instead of the file.
Here above is reported the part of code which attends to the conversion from float into wholes at 16 bits. Every float sample is graduated and rounded so that the maximum value engaged by the module of sequence samples of wholes is 32767.

...
for(offset=0;offset<length;++offset) // converto i campioni
{
	sample=floatData[mi->read_samples+offset];
	if (sample>=0.0f)
	{
		ibuf[offset]=(short)((sample/max_sample*32767.0F)+0.5F);
	}
	else
	{
 		ibuf[offset]=(short)((sample/max_sample*32767.0F)-0.5F);
	} 	
}	
...

The duration of samples sequences in .TIM files is not arbitrary. The numbers of sequence samples can range one of the following values: 2048, 4096, 8192, 16384, 32768, 65535. In saving time of .TIM files is therefore necessary to extend with noughts the sequence that must be saved, till its length is reaching one of the established values, or is necessary to stop at 65535 samples the longer sequences of such bound.
The setup data structure in file-queue contains very important information which should be suitable to preserve in case of .TIM file being loaded in Cool Edit, modified and saved once again in .TIM format. Unfortunately Cool Edit doesn’t give us the possibility of storing in a vector these information. By a trick, setup structure is converted into a character sequence, divided in three parts and stored in three string which were originally employed by Cool Edit to store information of .WAV files. The title and comment strings are stored as proper as they are in other two strings, and can be modified by the user unlike the three strings including the other parts of the sequence. Likeweise the maximum value of the module is transformed into a 8 character string in loading phase and then converted into float and used to re-graduate the samples of wholes sequences in the conversion from int into a float, performed in saving phase. The Fig. 1 explains the dialog box that is displaying information of .WAV files, when these last have been replaced by a .TIM file queue converted into strings.

�

fig. 1	Dialog box holding the queue structure converted into strings.
Using the filter

The second figure show as it is possible to load in Cool Edit a .TIM file by selecting from those presented by the opening file dialog box. All operations of conversion are performed by DLL in a very clear way for the user. The MLSSA format is becoming for the user absolutely singular (necessary) from the other formats supported by COOL EDIT, as explained in Fig. 3.

�

Fig. 2	Opening file dialog box of Cool Edit.

�

Fig. 3	List of the formats supported by Cool Edit in which is included the MLSSA format.

In saving phase of files is possible to modify the value of the whole acquisition _ algorithm, which suggests the way by which the file has been achieved, marking the properly radio button in saving options of dialog box, explained in Fig. 4.

�

Fig. 4	Saving options dialog box in MLSSA format.
Testing the filter

The filter has been tested loading the same file, aula-04.tim in Cool Edit and in MLSSA. As described in Fig. 5, the displayed signal is the same in the graphichs windows of the two programs.

�
�

Fig. 5	The aula-04.tim file loaded in Cool Edit and in MLSSA.�
�CONVOLVE WITH CLIPBOARD

This module adds to in Cool Edit program the operating possibility to perform the linear convolution between the two audio signals.
The primary aim of the new implemented function was the auralisation of an anechoic audio signal, to reach it by convolving linear the signal with the impulse response of a particular environment.
Moreover the function can also be applied to filter an audio signal with every sort of FIR filter, of which is avalilable the impulse response.

Using the module

First of all it is necessary loading in Cool Edit the file containing the impulse response. The file format could be anyone of the most supported by Cool Edit. The temporal trend of the loaded signal is displayed in the graphic window of the program. At this point we need copying the impulse response in Clipboard using Copy function of Edit menu, after having selected the part of the signal we are interested on which could be the loaded whole-signal or its portion).
�
Therefore you load the file containing the audio signal to filter, you must select the part that you are interested on to filter and you let the convolution function start by pressing the corresponding button, as showed sidewise on Cool Edit tollbar or selecting Convolve with Clipboard by Transform menu.
The module displays the inserting data dialog box, as presented in Fig. 6 in which the user must lay the desired parameters and then push OK button if he likes going on, or Cancel if he needs the contrary.
In the dialog box are showed summarized information about the impulse response present in Clipboard. and above the audio signal to convolve with this (frequency of the sample, channel number, lenght in samples). The dialog box presents also the dimension in samples of FTT used by algorithm which performs the linear convolution in the power of the frequency. Such dimension is automatically chosen by the module in such way to minimize the number of necessary operations to perform the same algorithm.
�

Fig. 6	Inserting data dialog box of Convolve with Clipborad module.

The meaning of the controls present in dialog box is the following:
Left, Right, Both: they are two radio button groups, which are referred to the impulse response and the other one to the audio signal to convolve with the answer. These checks let, if one or both signals are stereo ones, choose rapidly which channel of the impulse response and of audio signal convolve each other. It is possible, indeed, that the user wish for example to convolve only the left channel of the audio signal with a stereo impulse response, to create a binaural stereo signal. The radio buttons are created so that they can be unworking when the choice is compulsory. For instance, if a signal is mono, all three radio buttons are unworking and automatically it has been selected the Left radio button. Moreover they set automatically when the user is trying to lay every combination of them which brings about an impossible result. Indeed thery are possible only the combinations which give as result a signal very similar to the one presented in Cool Edit graphic window. For examples, if both signals are stereo ones, is impossible to convolve the sole left channel of the impulse response with the sole left channel of audio signal, because all that would cause a mono-signal. To perform this kind of convolution is moreover possible, having transformed the audio stereo signal into a mono audio signal, set up only by the left channel of the primery signal, (using Convert Sample Type function from Edit menu). The Fig. 6 presents the aspect od dialog box in case of the impulse response is stereo and if the audio signal is mono, the user can choose or to convolve the audio signal with the right channel or with the left one (as showed in figure) of the impulse response.
Remove DC component: marking check box if you wish to remove the possible continuous component present in the signal resulted from the convolution.
Having pushed OK button, the module goes on executing the necessary calculations, displaying a progress meter which informs progressively the user on proceeding calculation and gives a real evaluation of the necessary time for their completion. If, having caused an interruption, the displayed data in the graphic window is unsettled, you can recover the original data by Undo function from Edit menu.
After having finished the computings, the module displays the final report Box showed in Fig. 7.

�

Fig. 7	Final report dialog box of Convolve with Clipboard module.

In this one they are showed summarized informations on the impulse response and on the audio signal that have been convolved, by specifying, in case of stereo signals which channels are really chosen by the user and then used for the convolution. The dialog box presents also the dimensions of FTT in samples used by algorithm and the total time employed for the convolution.
After having closed the dialog box, the data of audio signal present are substituted with those of the signal, as result from the convolution. If you wish, you could hear the signal as soon as performed using Cool Edit Play function.

Description of implemented algorithm form the module

The XfmSetup () function achieves some crossed controls over the data in the Clipboard (impulse response) and in the graphic window (audio signal to filter). The data to work out must be at 16 bits, mono or stereo, with frequency of each sample. If the Clipboard were unaccessible or the data in this last included were at 8 bits, it has been displayed a suitable error message and the execution of the module is interrupted by recovering the control to Cool Edit principal window.
If the frequencies of sampling ot the two signals are different, it has been requested confirm of the operation displaying a suitable message (see Fig. 8).
Clipboard data are copied in a vector, a reference of which is copied in the user structure. The field hUserData of the pointer ci at variables of COOLINFO sort is a reference for the user structure. Through ci, the reference to the vector in which has been copied Clipboard content, together with the set up parameters by the user in the insert data dialog box, is transfered to XfmDo () function which shall be able to comply with the same vector.

�

Fig. 8	Confirm message of convolution operation.

The user structure of this module named CONVOLVE is so defined:

typedef struct convolve_tag
{	
	char cotype;	// canali tra cui effettuare la convoluzione
	char cotypess; 	// valore precedente di cotype nel caso stereo-stereo
	char cotypesm;	// valore precedente di cotype nel caso stereo-mono 	
	long N; // lunghezza in campioni della risposta all’impulso
	long L; 		// dimensione, in campioni, della FFT utilizzata dall’algoritmo
	long NX;		// lunghezza in campioni del segnale audio da convolvere
	long IRSampRate;// frequenza di campionamento della IR
	long ADSampRate;// frequenza di campionamento del segnale audio
	DWORD eltime; 	// usato per segnalare la RemoveDC nella prima dialog box
// e per il tempo totale trascorso nella seconda
	HWND hWnd;		// dati della finestra chiamante di Cool Edit
	HINSTANCE hInst;
	HANDLE hClipData; 	// riferimento al vettore in cui XfmSetup() memorizza la IR
						// contenuta nella Clipboard
} CONVOLVE;

In this way has been determined, calling the OptiSize () function here above reported, the length of FTT wich minimizes the number of multiplications between floats (the most difficult operation as computation time).

// Calcolo della FFT size che minimizza il numero di moltiplicazioni reali totale
float mrt(long L, long N, long NX) // moltiplicazioni reali totali
{
	float mr;
	long numblocks; // numero totale di blocchi
	
	numblocks=(NX+(N-1l))/(L-N+1l);
	if ((NX+(N-1l))%(L-N+1l)) numblocks+=1l; // numero di blocchi dati totale
	mr=(float)(2*L*(log(L/2)/log(2)+1))*numblocks; // moltiplicazioni reali totali
	return (mr);
}	

long OptiSize(long N, long NX)
{
	long L; // dimensione ottima dei blocchi
	float mr; // numero di moltiplicazioni reali che l'algoritmo
	float mrtemp; // effettua per la convoluzione di un blocco

 L=2l;
 while((L*=2l)<N);
 L*=2l; 	// comincio la ricerca dalla prima potenza di 2 che sia >= N, moltiplicata per 2
 mr=mrt(L,N,NX);// (N.B. il valore minimo di L calcolato da questo algoritmo è 8)
 while((mrtemp=mrt((L*=2l),N,NX))<mr) // ciclo finchè il numero di m.r. cala
 	mr=mrtemp; // e mi fermo quando comincia a crescere
 L/=2l; // l'L ottimale è quello del penultimo ciclo
 return (L);
}

The total number of real multiplications to achieve is equal to the blocks number in which I divide the entrance signal for the number of multiplications made for every block, both these values dipend on the L value. Rising L the first goes down when, the second rises, there is a value between those assumed by L (powers of 2) which minimizes their product. The search algorithm finds it in a repeated way, starting from the first power of 2 (2N.
The function diplays then the insert data dialog box. The set-up parameters by the user are copied in the user structure and XfmSetup () function is ended.
XfmDo () function performs all intermediates operations in arithmetics at moving comma, all used data (the answerback to the impulse and the blocks data of the signal) are so converted into input float at 32 bits.
The function allocates together the necessary data structure to the processing and let them initialize.
The algorithm computes once again the FTT of the answering to the impulse response and enters the principal cycle calling OverlapAndSave () function here above reported. It calculates the linear convolution in the field of the frequency, through an algorithm of Overlap and Save sort.

...
	//valore di Convo Type i.r. - a.d.
	//'A' 	mono - mono
	//'B'					mono - stereo
	// sottocasi di 		STEREO - STEREO				
//'C'					both - left
//'D'					both - right
//'E'					both - both
//'F'					left - both
//'G'					right - both
// sottocasi di			STEREO - MONO
//'H'					left - mono
//'I'					right - mono
...
// riinizializzo il ConvoType
// per casi che richiedono le stesse variabili allocate
if ((ConvoType=='F')||(ConvoType=='G')) ConvoType='B';
else if ((ConvoType=='H')||(ConvoType=='I')) ConvoType='A';
// la IR viene memorizzata nei vettori LeH e RiB in modo da ricondursi ai soli
// casi A,B,C,D,E
...
long OverlapAndSave(int huge *Intbuf, // buffer per interi
					// vettori per la memorizzazione del canale sinistro della risposta
// all’impulso (H) e dei blocchi di segnale audio (B)
float huge *LeH,float huge *LeB,
					float huge *ReBmemo,// vettore in cui memorizzare gli ultimi N-1 campioni
										// del blocco precedente, per velocizzare i calcoli
					float huge *RiB,float huge *RiH, // canale destro
					long N,long L,
					char ConvoType,
					char RemoveDC,
					float huge *Xmem,
					float huge *Xbuf,
					COOLINFO far *ci)
{
	long NX=(ci->dwHiSample-ci->dwLoSample-N+2); // lunghezza parte selezionata iniziale
	long block;
	long intblocks; // numero blocchi di dati interi
	long numblocks; // numero totale blocchi (=intblocks+blocchi di coda)
	long i;
	long nm1=(N-1);
	long lmnp1=(L-N+1);
	float huge *LeBmemo=ReBmemo;
	float huge *RiBmemo=&ReBmemo[N-1]; // uso la seconda metà di ReBmemo come buffer
	 // per i dati di right
	float huge *Rebuf=(float huge *)Intbuf; // uso Intbuf anche come buffer per i float
	char huge *Charbuf=(char huge *)Intbuf;// casting di Intbuf per utilizzare ReadData
	float huge *Retowrite; // indica quale vettore di float salvare
	// char huge *cImB=(char huge *)ImB;// casting di ImB per utilizzare ReadData, uso
	// int huge *iImB=(int huge *)ImB; // ImB come buffer temporaneo per i dati int letti
	// variabili che dipendono dal numero di canali che uso per sfruttare lo stesso
	// algoritmo con dati sia mono sia stereo
	long LoSample=ci->dwLoSample*ci->wChannels*2; // offset del primo e dell'ultimo
	long HiSample=ci->dwHiSample*ci->wChannels*2; // campione evidenziato (in bytes)
	long ennex=NX*ci->wChannels;
	long ennemeno1=(N-1)*ci->wChannels;
	long ellemenoennepiu1=(L-N+1)*ci->wChannels;
	long elle=L*ci->wChannels;
	// altre variabili
	float Xmax=0.0f; // valore massimo della sequenza convoluta
	int nFile;
	long ToWrite; // punti da trasferire su file
	char ok=TRUE; // TRUE se non è stato premuto Cancel e la scrittura è andata bene
	char extension[]="FLO";
	LPSTR szThree=(LPSTR) extension;
	char cFilename[144]; // ="C:\\COOL\\tempfile.flo";
	LPSTR szFilename=(LPSTR)cFilename;
	
	// creo il file ausiliario per i valori float, se non riesco ritorno un numero
	// di campioni opportuno
	GetTempName(ci,szThree,szFilename);
	// _fstrcpy((LPSTR)cFilename,szFilename);	
	nFile=_lcreat(szFilename,0);
 if (nFile==HFILE_ERROR)
 {	
 	return (ci->dwHiSample-ci->dwLoSample-N+2);
 }
 // inizializzo a zero i dati in ReBmemo per il primo blocco
	fZeroPadding(ReBmemo,ennemeno1);
	// inizializzo il progress meter
	ProgressCreate(ci,(LPCSTR)"Convolving with clipboard",NULL);
	// ciclo principale
	intblocks=NX/(L-N+1l); // numero di blocchi di dati da leggere interi con ReadData
	numblocks=(NX+(N-1l))/(L-N+1l);
	if ((NX+(N-1))%(L-N+1)) numblocks+=1; // numero di blocchi dati totale
	for (block=0;block<numblocks;block++)
	{
		// ricopio gli N-1 ultimi dati del blocco precedente
		switch(ConvoType)
		{
			case 'A': case 'C':
			 for (i=0l;i<nm1;i++) LeB[i]=LeBmemo[i];
				break;
			case 'B': case 'E':
				for (i=0l;i<nm1;i++)
				{
					LeB[i]=LeBmemo[i];
					RiB[i]=RiBmemo[i];
				}	
				break;	
	 case 'D':
				for (i=0l;i<nm1;i++) RiB[i]=RiBmemo[i];
				break;
		}	
		if (block<intblocks) // se non sono ai blocchi di coda
			// leggo gli (L-N+1) punti dallo user's data (*2 perchè sono a 16 bit)
			ReadData(ci,Charbuf,(LoSample+block*ellemenoennepiu1*2),ellemenoennepiu1*2);
		else if (block==intblocks) // sono nel primo blocco di coda
		{ // leggo dallo user's data finchè ce n'è, poi riempio con zeri
			ReadData(ci,Charbuf,(LoSample+block*ellemenoennepiu1*2),((ennex%ellemenoennepiu1)*2));
			iZeroPadding(&Intbuf[(ennex%ellemenoennepiu1)],
						 (ellemenoennepiu1-(ennex%ellemenoennepiu1)));			
		}
		else// sono nel secondo (eventuale) blocco di coda
		{ // riempio tutto con zeri
			iZeroPadding(Intbuf,ellemenoennepiu1);
		}
		// converto gli interi in float e li memorizzo
		switch(ConvoType)
		{
			long ii;
			
			case 'A':
			 for (i=0l;i<lmnp1;i++) LeB[nm1+i]=(float)Intbuf[i];
				break;
			case 'B': case 'E':
				for (i=0l;i<lmnp1;i++)
				{
					ii=i<<1; // ii=i*2
					LeB[nm1+i]=(float)Intbuf[ii];
					RiB[nm1+i]=(float)Intbuf[++ii];
				}	
				break;
			case 'C':
				for (i=0l;i<lmnp1;i++) LeB[nm1+i]=(float)Intbuf[(i<<1)];	
				break;
	 case 'D':
				for (i=0l;i<lmnp1;i++) RiB[nm1+i]=(float)Intbuf[(i<<1)+1];
				break;
		}
		// se non è l'ultimo ciclo ricopio gli ultimi N-1 punti
		if (block<(numblocks-1))
			switch(ConvoType)
			{
				case 'A': case 'C':
				 for (i=0l;i<nm1;i++) LeBmemo[i]=LeB[lmnp1+i];
					break;
				case 'B': case 'E':
					for (i=0l;i<nm1;i++)
					{
						 LeBmemo[i]=LeB[lmnp1+i];
						 RiBmemo[i]=RiB[lmnp1+i];
					}	
					break;	
		 case 'D':
					for (i=0l;i<nm1;i++) RiBmemo[i]=RiB[lmnp1+i];
					break;
			}
		// faccio la convoluzione circolare di questo blocco con la impulse response
		BlockConvo(LeH,RiH,LeB,RiB,L,ConvoType);
		// indico quale vettore salvare, creo un vettore di float unico se necessario
		switch(ConvoType)
		{
			long ii;
			
			case 'A':
			 Retowrite=&LeB[nm1];
				break;
			default:
				for (i=0l;i<lmnp1;i++)
				{
					ii=i<<1;
					Rebuf[ii]=LeB[nm1+i];
					Rebuf[++ii]=RiB[nm1+i];
				}
				Retowrite=Rebuf;	
				break;
		}
		// cerco il valore massimo e salvo su file (in modo opportuno se ultimo ciclo)
		if (block<(numblocks-1)) ToWrite=ellemenoennepiu1;
		else ToWrite=(ennex+ennemeno1)%ellemenoennepiu1;
		if (!(RemoveDC)) FindXmax(Retowrite,ToWrite,&Xmax);
		ok=WriteToFile(Retowrite,ToWrite,nFile);
		// se va tutto bene aggiorno il progress meter
		if(ok)
		{
			ProgressMeter(ci,block+1,numblocks);
			if (*(ci->lpProgressCanceled)) ok=FALSE;
		}	
		// se qualcosa va male esco dal ciclo
		if(!(ok)) break;
	}
	// chiudo il progress meter
	ProgressDestroy(ci);
	// se devo rimuovere la componente DC chiamo la funzione opportuna
	if ((RemoveDC)&&(ok))
		ok=RemoveDCComponent(Xmem,Xbuf,(DWORD)(NX+nm1),&Xmax,nFile,ci);		
	// se il valore massimo trovato è zero allora lo pongo uguale a 1 per non avere
	// errori di divisione per zero.
	if (Xmax==0.0f) Xmax=1.0f;
	// se non è stato premuto cancel converto i float in interi e li invio a CoolEdit
	// nota che in realtà Rebuf e Intbuf puntano alla stessa area di memoria
	if (ok) ok=FromFileToCool(Rebuf,Intbuf,elle,ennex+ennemeno1,Xmax,nFile,ci);
	// chiudo in ogni caso il file ausiliario e lo cancello
	_lclose(nFile);
	remove(szFilename);
	// ritorno il numero di campioni che deve ritornare XfmDo
	if (ok) return (ci->dwHiSample-ci->dwLoSample+1);
	else return (ci->dwHiSample-ci->dwLoSample-N+2);
}

The principal cycle creates an auxiliary file in which stores the result of convolution like a sequence of float. At this point it is performed a first data-block to filter long L samples. The first block is made by (N-1) zeroes followed by the first (L-(N-1)) samples of signal to filter. It is settled the FTT from the first block and the result is a filter by FTT of the impulse response (through a complicated multiplication between samples corresponding to the two complex sequences, representing the DFT of the signals), by recalling BlockConvo () function. Then it is made the IFFT of the result of filtering, reaching the circular convolution between the impulse response and the samples of the first block. The first (N-1) samples of circular convolution are different from the other that I would obtain doing the linear convolution of the same two sequences, for this reason I reject them. It must be noticed moreover that at the beginning of the first block are inserted (N-1) zeroes, the first sample between those that I retain corresponds, as wished, to the first sample of linear convolution between two sequences.
You look for (calling FindXmax ()) the sample with the absolute maximum value between (L-(N-1)) which I keep and this value is stored. The preserved samples are saved in a transitory file again under float form at 32 bits (WriteToFile ()). You proceed to the second block, in which the first (N-1) samples are similar to the last ones (N-1) of the first block, on the contrary the other left (L- (N-1)) come from the consequence of the signal. You performs over the second block the same sequence of operations made over the first one and then you proceed towards the third and so on. Likewise as it has been made at the beginning of the sequence to filter, at the end of tha same are inserted (N-1) zeroes, all that guarantees a correct representation of the queue of linear convolution of the two sequences.
At the end of the principal cycle the temporary file which has been created contains (NX+(N-1) samples float at 32 bits which represent the linear convolution between the two sequences. In case of being selected the removal of the continuos component, it is called RemoveDCComponent() function which carries out it using a sophisticated and quickly algorithm of moving average. At every sample is subtracted the average of precedent samples (frequency of sampling/16).
The values of the temporary file are at last loaded in Cool Edit in replacement of those of the sequence to filter (FromFileToCool()). At this aim are converted into wholes at 16 bits which is the inside format of Cool Edit data, re-graduating them so that to the float sample with maximum value corresponds to the whole sample of module equal to 32767 (maximum positive value 16 bits representing).
The temporary file is erased and the used variables are deallocated. The performance of the module terminates with displaying the final report dialog box.

Testing the module

In phase of drawing of the source code a first simple testing of the module has been made convolving an impulse response through an impulse sequence. The result of convolution has been, as it had to be, an identical signal to the impulse response.
The module has been tested deeper convolving an anechoic audio signal with binaural impulse responses, corresponding to different environments and positions and also with impulse response of other sort. (ex. filters) and and the hearing the so generated signal. The obtained results have been excellent in all circumstances, with impulse responses of more differents lengths from 200 samples of a low lay filter to hundreds of thousands samples to the environment impulse response of a arena.
It has also been compared the result of convolution of anechoic musical piece with binaural impulse response through binaural recordings of the piece, performed in the same environments, positions and with the same set used for the determination of the impulse response.
The convolved piece and the binaural recordings, leaving out the background noise present only in these last, the results are effectively undistinguished.
Fig. 9, 10 and-11 show respectively an anechoic musical piece, an impulse response and their convolution, performed with Convolve with Clipboard.

�

Fig. 9	Anechoic musical piece.

�

Fig. 10	impulse response.

�

Fig. 11	Result of convolution of the musical piece with impulse response.

��GENERATE MLS SIGNAL

Purpose of this module is to generate a bipolar MLS signal, utilizable like an excitement signal of the studying system corresponding to the impulse response with MLS technique.
The module is able to generate MLS sequences of c order from 2 to 21 included. The length of the producted sequences L (= 2c-1) changes from 3 to 2097151 samples.
It is then possible to produce long until 47.55 seconds MLS signals at sampling frequency of 44.1 kHz, the same used by CD, which is the maximum available for a lot of audio commercial cards. All that let us measure impulse responses of the same duration. To have a comparison term, MLSSA system generates MLS sequences of 16 maximum order (65535 samples) and in this way can measure impulse responses of 1.49 seconds maximum duration at sampling 44.1 kHz frequency. The module Generate MLS Signal and its twin Deconvolve MLS Signal can therefore be used profitable for the measure of impulse responses with MLS technique even in extreme circumstances, that is to say, in environments with very long reverberation times. In these places the established measures with MLSSA system on the contrary are subjected to the so called time aliasing phenomenon, which damages them getting them uncorrect and untruthful.
The S/N ratio (signal/noise) of measured IR is directly proportional to the length of excitement MLS signal. Longer MLS sequences allow then IR measures with a grater S/N ratio.
The module, unlike MLSSA system, gives the user the possibility to choose for a same order of the sequence, between different taps configuarations. That permits to find out and possibly to remove some distorsion types which can trouble the measured IR.
In Tab. 1 are represented all taps configurations used by the module. For each configuration is also indicated the position in which it appears the imagine peak, which points out the measures subjected to distorsion of slewing type. The configurations used by MLSSA system, for the orders by this used (12,14,15,16) are marked by A letter.
Name�Order�Length�Taps�Slew Peak��2�2�3�2,1�2��3�3�7�3,1�3��4�4�15�4,1�4��5�5�31�5,2�18��6�6�63�6,1�6��7�7�127�7,1�7��8�8�255�8,6,5,1�197��9�9�511�9,4�130��10�10�1023�10,7�947��11�11�2047�11,2�1029��12 A�12�4095�12,11,10,2�2368��12 B�12�4095�12,7,4,3�4032��13 A�13�8191�13,4,3,1�934��13 B�13�8191�13,12,11,9,6,5,2,1�6135��14 A�14�16383�14,13,12,2�3515��14 B�14�16383�14,12,11,1�7558��14 C�14�16383�14,12,10,9,7,5,3,1�13512��15 A�15�32767�15,14�32753��15 B�15�32767�15,12,11,8,7,6,4,2�11562��15 C�15�32767�15,11�8189��15 D�15�32767�15,8�28673��16 A�16�65535�16,5,3,2�61481��16 B�16�65535�16,12,11,10,7,4,3,2�41583��17 A�17�131071�17,3�9300��17 B�17�131071�17,14,11,9,6,5�98321��17 C�17�131071�17,14,13,9�130155��17 D�17�131071�17,15,13,11,10,9,8,4,2,1�15045��18�18�262141�18,7�209765��19�19�524287�19,6,5,1�33831��20�20�1048575�20,3�212012��21�21�2097151�21,2�1048586��
Tab. 1	Configuration of taps used and corresponding position of Slew Peak.
Using the module

You must create a new file, at first empty, with Edit New function. The file must be mono and of the desired frequency of sampling for MLS signal.
� INCORPORA PaintShopPro ���
Then you let the function of MLS signal generation start, pushing the corresponding button, showed sidewise, on Cool Edit tools bar, or selecting MLS Signal from Generate menu.
The module displays the insert data dialog box, illustrated in Fig. 12, in which the user must set up the requested parameters and then press OK button, if he likes proceeding or on the contrary Cancel.

�

Fig. 12	Insert data dialog box of Generate MLS Signal.

The meaning of the present check of the dialog box is the following:
MLS Order: to select, between the presented names of the drop down list of combo box, the option corresponding to MLS order and configuration of desired taps.
Having pushed OK button, the module goes on executing the necessary computations, displaying a progress meter that informs the user, step by step, about percentage calculations progress and gives an estimation of the necessary time for their completation.
The progress meter allows further the user to suspend or give up computing in every moment. At the end of the computing, is displayed the performed MLS sequence in graphic window.
The signal used like stimulus in IR measure by MLS technique is the continuos repetition of a period of the same MLS sequence. This is performed selecting Loop Mode from Options menu and then pushing Play button.

Measure of the impulse response through MLS technique

To reach a IR measure, though MLS technique is necessary to create the excitement signal and at the same time to obtain the output of the system.
If you have an audio card capable of producing and obtaining at the same time audio signals, the measure can be taken opening two requests form Cool Edit. In the first one you produce the stimulus by the method here above described. In the second one you reach the exit of the studying system, pushing Record button, by sampling it at the same frequency of MLS signal of stimulus. From the reached signal you have the measure of IR using Deconvolve MLS Signal module, described in the next paragraph.
If the audio card doesn’t allow to generate and obtain at the same time audio signals, the process is equally possible if you have a DAT or every other digital recording. You can proceed in two ways:
Recording by DAT, connecting directly with the analogical output of audio card, for a lot of minutes of stimulus signal, produced by the method here above mentioned. Then re-creating the recorded signal, using it like a stimulus signal to obtain, through Cool Edit, the output of the analyzed system, pressing Record button, sampling it at the same frequency of MLS signal of stimulus. From the performed signal, you obtain the measure of IR, using Deconvolve MLS signal module, described in the next paragraph.
Producing by Cool Edit the stimulus signal and recording by DAT the output of the studied system. At this point, you connect the analogical exit of DAT with the analogical entrance of the audio card and you re-produce the recorded signal, having it at the same time together with Cool Edit, pushing Record button, sampling it at the same frequency of stimulus MLS signal.
From the so produced signal, you can have the measure of IR using the module Deconvolve MSL Signal, named in the next paragraph.
Using two DAT is even possible to have measures of IR without need of putting the computer in the place chosen for the measure.
It’s basically that for the acquisitions and generations is used the same frequency of sampling and the same audio card. In case of using a DAT, it is necessary to use the same DAT for recordings and reproductions. The so-called tricks are necessary because differences, also very little between the frequencies of sampling of the stimulus signal and of the output of the analizing system, can cause excessive noise in the measured IR.
For the same reason, we need to make use of the analogical input and output instead of digital ones.

Description of the implemented algorithm from the module

XfmSetup () function displays the insert data dialog box. To the selected name from the user are corresponding the order and the number of taps of the sequence, which are copied in the user structure, which refers the hUserData of ci pointer with variables of COOLINFO type. Through ci the set up parameters are passed to XfmDo () function.
The user structure of this module, called MLS is so defined:

typedef struct mls_tag
{
	int MLSorder; // ordine della sequenza MLS selezionata
	int MLStaps; // numero di taps della sequenza MLS selezionata
	DWORD Selected; // dimensione dell’area selezionata,
// utile nel caso la generazione non vada a buon fine
} MLS;

XfmDo () fuction allocates the necessary data structure for the processing and calls the generating function of MLS sequence. The generated MLS is binary. It is converted into a bipolar sequence and then transfered to Cool Edit with the following instructions:

...
// converto gli 0 e 1 in 32767 e -32767
for (i=1;i<=L;i++) MLSdata[i]=(MLSdata[i]==0)?32767:-32767;
WriteData(ci,cMLSdata,losamp*2,L*2);
...

The data structure are deallocated and the execution of the module finishes. Cool Edit supplies to display the soon generated sequence in the graphic window.

Testing the module

The module has been at first tested checking that the spectrum of sequences from these last produced, were white, as it must be the spectrum of a pseudocausal sequence.
For the sequences of low order, it has been also made a comparison with similar sequences handly produced.
At the end, when it has been performed also the twin module Deconvolve MLS Signal, the two modules have been tested at the same time by taking measures of different impulse responses through MLS technique, using sequences with different orders and taps.
�
�Deconvolve MLS Signal

This module can compute the IR of a system. The sequence on which it works, is the sampled impulse response of the studying system to a MLS stimulus signal. IR is determined trough circular cross-correlation of the exit of the analizing system with the stimulus signal. The determined IR is stored in the Clipboard. In this way, the included data in graphic window aren’t troubled and are available for next analyses, while the IR can be copied in another Cool Edit instance and then saved on a file, or used directly from Clipboard, from Convolve With Clipboard module for the convolution of an audio signal.
The module also calculates stereo IR, like those binaural ones, starting from sequence of stereo samples.
In this case the operation of re-graduating and circular translation performed by algorithm are executed, so that they can’t trouble the relations of existing wideness between the two channels of IR and their temporal coherence.

Using the module

First of all it is necessary to obtain the response of the system to a MLS excitement signal of such order that we can avoid time aliasing. To improve the S/N ratio we should need to use a MLS excitement signal of the maximum available order. Usually we accept this compromise solution, using like an excitement signal a sequence of such order that can offers a good S/N ratio in acceptable measure and data times.
In phase of acquisition of the response of the analysed system, you have to consider that, the more is the number of obtained periods of the sequence on which you can do the pre-averaging, the more is the S/N ratio of the measured IR (obviously it’s also greater the space on the requested disk until the end of the measure, to store the produced signal).
Having obtained the response of the studied system, you can select, even in an approximative way, a number of periods, on which the module will do the pre-averaging, that is considered to warrant the desired S/N ratio in the measured IR.
� INCORPORA PaintShopPro ���
At this point you let the computing function of IR start, pushing the corresponding button, showed sidewise, on Cool Edit toolbar, or selecting Deconvolve MLS Signal from Transform menu.

The module displays the insert data dialog box, explained in Fig. 13, in which the user maust lay down the requested parameters and then pressing OK button if he wants to go on or Cancel on the contrary.

�

Fig. 13	Insert data dialog box of Deconvolve MLS Signal module..

The meaning of the controls that are present in the dialog box is the following:
MLS Order: selecting, between the proposed names of drop down list of combo box, the same name chosen during the generation of the excitement signal. This process guarantees that the MLS sequence used for the convolution is identical to the excitement signal.
Remove DC component: marking the check box if you wish to remove the eventual continuous component included in the measured IR.
Having pushed OK button, the module performs the necessary computations, displaying a progress meter that informs, step by step, the user about the computing percentage progress and gives a valutation of the necessary time for their execution.The progress meter allows the user to suspend or give up the computings in every moment.
Having finished the computings, the module displays the final report dialog box, showed in Fig. 14.

�

Fig. 14	Final report dialog box of Deconvolve MLS Signal module.
In it are displayed information about the measured IR: its length in samples, the number of channels, the frequence of sampling, the number of periods on which has been performed the pre-averaging, the spent time for the determination of float values while the IR has been re-graduated. The dialog box informs that also the measured IR has been stored successfully in the Clipboard.
The used frequency to determinate IR isn’t modified at all by the processing and remains displayed in Cool Edit graphic window.
The necessary time for the deconvolution of a MLS signal is very little. On a PC Pentium processor with 60 MHz with compressed hard disk (which slackens the execution of algorithm) we need less than 5 seconds for the deconvolution of a 16 order MLS and less than 3 minutes for the deconvolution of a 21 order MLS.

Generation of a convolved MLS with an impulse response using the module Deconvolve MLS Signal

It is often useful to equalize the MLS, which we intend to use like an excitement signal, to correct absences, in some interval of frequence, of the amplification plant, or of the speakers used for the measure. At this aim it is necessary to convolve all periods of used MLS with an impulse response which compensates suitably the named absences. As the excitement signal is periodic, it’s enough to generate a period which is convolved with the named IR and then to use a looping of this period like an excitement signal.
Owing to reversibility of operations of deconvolution, is possible to use Deconvolve MLS Signal module like a circular convolutor to produce the pre-convolved MLS sequence. For this aim we need:
Inserting, at the beginning of the IR which we intends to use, a silence which performs the duration greater than the one of MLS that must be convolved with. As the exceeding silence will be automatically cut by the deconvolver, we can also abound in its duration.
Inverting temporally the whole sequence performed by inserting the silence at the beginning of the original IR.
Selecting the result of inversion and performing Deconvolve MLS Signal module, deconvolving it by choosing in the insert data dialog box, the name of MLS which we wish to convolve with IR.
Doing a Paste of the obtained result, stored in the Clipboard and inverting it temporally. The result of this second temporal inversion is the requested signal, which is to say, a period of the MLS circularly convolved (or lineary if we think of periodic MLS) with IR.
Description of the implemented algorithm from the module

XfmSetup () function displays the insert data dialog box. To the selected name from the user are corresponding the order and number of taps of MLS signal, which are copied in the user structure, to which refers the hUserData field of ci pointer at variables of COOLINFO types. Through ci the set up parameters are passed to XfmDo () function.
If the portion of signal selected by the user in the graphic window has got less length than the one of a period of set up MLS, it is displayed a suitable message and then the execution of the module is interrupted.
The user structure of this module, so-called MLS, is so defined:

typedef struct mls_tag
{
	char Channels; 	// canali della IR determinata
	int MLSorder; 	// ordine della MLS utilizzata per la deconvoluzione
	int MLStaps; 	// numero di taps della MLS utilizzata per la deconvoluzione
	char RemoveDC;	// flag per la rimozione della componente continua della IR
	int numblocks; 	// numero di periodi su cui si è effettuato il pre-averaging
	float Xmax;		// valore rispetto a cui la IR è stata riscalata
 DWORD eltime;	// tempo impiegato per la deconvoluzione, in millisecondi
	DWORD SampleRate; // freq. di campionamento
	HWND hWnd;		// dati della finestra chiamante di Cool Edit
	HINSTANCE hInst;	
} MLS;

XfmDo () function allocates out the necessary data structure to produce the deconvolution and then performs the following instructions:

// avvio il timer
 tstart=GetTickCount();
 // creo il progress meter
 ProgressCreate(ci,"Initializing MLS deconvolution...",NULL);
 // genero il segnale MLS sotto forma di 0 e 1
 ok=genMLS(taps,ntap,ldataL,ci);
 ProgressDestroy(ci);
 if (ok)
 {
 	ProgressCreate(ci,"Look up TOB...",NULL);
 	// cerco la trace orthogonal base
 	ok=lookupTOB(tob,MLSorder,ldataL,ci);
	 ProgressDestroy(ci);
	}
	if (ok)
	{	
 	ProgressCreate(ci,"Generating permutation...",NULL);
	 // genero la permutazione per la FHT (Fast Hadamard Transform)
	 ok=genperm(permut,tob,ldataL,MLSorder,ci);
 	ProgressDestroy(ci);
 }	

 if (ok)
 {
		ProgressCreate(ci,"Averaging data...",NULL);
	 // a questo punto permut contiene il vettore di permutazione
	 // leggo i dati da deconvolvere facendone la media
	 ok=ReadAndAverageData(cdata,ldataL,ldataR,L,&blocks,ci);
	 ProgressDestroy(ci);
	}	
 if (ok)
 {
	 // li converto in float memorizzandoli in data da 2 a L+1
	 if (Stereo)
	 	for (i=2;i<=Lp1;i++) {fdataL[i]=(float)ldataL[i]; fdataR[i]=(float)ldataR[i];}
 else
	 	for (i=2;i<=Lp1;i++) fdataL[i]=(float)ldataL[i];
	 // creo un nuovo progress meter
	 ProgressCreate(ci,"Deconvolving MLS",NULL);
	 // INIZIO della deconvoluzione vera e propria
	 // permuto i dati ed il vettore di permutazione
	 permdata_perm(fdataL,permut,L+1);
 	ProgressMeter(ci,1,3*Channels);
		if (*ci->lpProgressCanceled) ok=0;
		if (ok)
		{
		 // faccio la FHT
		 FHT(fdataL,MLSorder);
	 	ProgressMeter(ci,2,3*Channels);
			if (*ci->lpProgressCanceled) ok=0;
		}
		if (ok)
		{
	 	// antipermuto i dati ed il vettore di permutazione
	 	antipermdata_perm(fdataL,permut,L+1);
	 	ProgressMeter(ci,3,3*Channels);
			if (*ci->lpProgressCanceled) ok=0;
		}	
		// se i dati sono stereo ripeto il tutto per il canale destro
		if ((Stereo)&&(ok)) 		
		{
			// permuto i dati ed il vettore di permutazione
		 permdata_perm(fdataR,permut,L+1);
	 	ProgressMeter(ci,4,3*Channels);
			if (*ci->lpProgressCanceled) ok=0;
		}
		if ((Stereo)&&(ok))
		{
		 // faccio la FHT
		 FHT(fdataR,MLSorder);
	 	ProgressMeter(ci,5,3*Channels);
			if (*ci->lpProgressCanceled) ok=0;
		}
		if ((Stereo)&&(ok))
		{
	 	// antipermuto i dati ed il vettore di permutazione
	 	antipermdata_perm(fdataR,permut,L+1);
	 	ProgressMeter(ci,6,3*Channels);
			if (*ci->lpProgressCanceled) ok=0;
		}	
	 // FINE della deconvoluzione vera e propria
		ProgressDestroy(ci);
	}
	if (ok)
	{
	 char clipok=1;
	
	 // a questo punto i dati sono float e in time reversed order
	 // cerco il massimo e la sua posizione
	 // se devo rimuovere la componente continua setto DCOffset a 1
	 // per segnalarlo a FindXmax
	 if (RemoveDC) DCOffsetL=1.0f;
	 FindXmax(&fdataL[2],L,&Xmax,&MaxPosL,&DCOffsetL);
	 MaxPosL+=2; // aggiusto il valore con l'offset 2
	 if (Stereo)
	 {
	 	if (RemoveDC) DCOffsetR=1.0f;
	 	FindXmax(&fdataR[2],L,&Xmax,&MaxPosR,&DCOffsetR);
	 	MaxPosR+=2; // aggiusto il valore con l'offset 2
	 	// tra le due posizioni del massimo, se la distanza tra i
	 	// due massimi è < di metà sequenza,tengo la massima, che
	 	// in realtà, ribaltando, è la minima, altrimenti tengo la
	 	// minima. La pos. del massimo viene comunque memorizzata
	 	// in MaxPosL.
	 	if (MaxPosR>MaxPosL)
	 		{if ((MaxPosR-MaxPosL)<(Lp1/2)) MaxPosL=MaxPosR;}
	 	else
	 		{if ((MaxPosL-MaxPosR)>(Lp1/2)) MaxPosL=MaxPosR;}
	 }
	 // se la lunghezza della sequenza lo permette
	 // scalo il massimo di 1500 punti
	 if (MLSorder>=12)
	 {
	 	MaxPosL+=1500;
	 	if (MaxPosL>(L+1)) MaxPosL=(MaxPosL%(L+1))+1;	
	 }	
		// se il valore massimo trovato è zero allora lo pongo uguale a 1 per non avere
		// errori di divisione per zero.
		if (Xmax==0.0f) Xmax=1.0f;
	 // converto i dati in int e ne inverto l'ordine
	 FloatToIntReversed(fdataL,fdataR,intbuf,Xmax,MaxPosL,L+1,DCOffsetL,DCOffsetR);
	 // scrivo i dati nella clipboard
		...
		...
	}
At first is generated the permutation matrix, then is performed the pre-averaging above all complete periods, included in the portion of signal selected by the user. The pre-averaging it is made summing up the samples of different periods which occupy the same portion in the period. The additions are contained in a long vector.
For this reason it is possible to execute the pre-averaging adding till 65536 different periods without having overflow.
After the pre-averaging the long vector is converted into a float vector and begins the really deconvolution. At the end of the deconvolution the data are float and in time reversed order.
You look for the maximum and its position, determing simultaneously, if it has been requested the elimination, the continuous component present in the measured IR.
FloatToIntReversed () function supplies to convert the IR from float into int and to arrange the samples or IR in correct temporal order, removing at the same time, if it is necessary, the continuous component of IR. As the deconvolution is performed in a completely asynchronous way in regards to the generation of the signal, it is necessary to fix a principal to determine which is the beginning of IR, that at the end of the deconvolution, futher then to be in time reversed order, has got its beginning in an unknown point of the vector and it is arranged circularly in it.
We have chosen to look for the maximum of IR and then to consider sample of 1500 samples preceeding to the maximum as beginning of the IR.
The converted IR in wholes is stored in the Clipboard and it is displayed in the final report dialog box which finishes the module.

Testing the module

The first testing has been performed creating a MLS through Generate MLS Signal module and then deconvolving it. The result has been correctly a delayed 1500 samples impulse sequence. Afterwards different periods of starting MLS have been convolved with a known IR using Convolve with Clipboard module and it has been performed the deconvolution of the result.
In this way we have obtained another time the IR used for the convolution, as it was expected, and with only a proof, we have tested the correctness of three of the new created modules.
At the end the module has been proved “on field” together with Generate MLS Signal module, measuring the impulse responses of different nature and length, using different MLS.
The Fig. 15 shows the impulse response of a very little room obtained with measure through MLS technique using the created modules Generate MLS Signal and Deconvolve MLS Signal.
The Fig. 16 describes on the contrary the IR of an audio card, measured with the technique illustrated in the previous paragraph, using a DAT.

�

Fig. 15	Impulse response of a little room determined through Deconvolve MLS Signal.

�

Fig. 16	Impulse response of audio card, determined through Deconvolve MLS Signal..
��GENERATE IRS SIGNAL

The aim of this module is to generate a bipolar IRS signal, utilizable, like excitement signal of the analysed system in measure of the impulse response with IRS technique. The function used from this is the same one performed by Generate MLS Signal module, in case of IR measures with MLS technique.
The module is able to produce IRS signal of C order included from 2 to 19. The length of the generated sequences 2L (= 2*(2C-1) varies then from 6 to 1048574 samples. For the features of IRS signal with IRS sequence of 2L length, we can measure IR of maximum length L.
The length of measurable IR through IRS technique, using this module and its twin Deconvolve IRS Signal changes therefore from 3 to 524287 samples. It is then possible to measure IR of maximum duration of 11.89 seconds at frequency of sampling of 44.1 kHz, used by CD, which is the highest disposable for a lot of commercial cards.
The greatest duration of measurable IR through IRS technique is then a quarter of the highest duration of measurable IT through MLS technique. For the determination of a IR of length L samples, the algorithms of generation and deconvolution of MLS signal must allocate vectors of L length, on the contrary the algorithm of generation of IRS signal must allocate vectors of 2L length and the one of deconvolution has to allocate vectors of 4L length. That can explain, having fixed a certain limit of laying out storage, the difference in length of measurables IR through the two techniques.
You can notice, moreover, a highest length of measurable IR equal to 524287 samples, is much more enough for the greatest part of real applications.
Moreover we remember that the measures of IR through IRS technique, unlike the one performed through MLS technique, are completely immune from distorsions caused to not smoothing of equal degree. The modules Generate IRS Signal and its twin Deconvolve IRS Signal can be also used profitably to measure impulse responses of systems which have have a certain degree of distorsion. The distorsion introduced by the above-mentioned systems get on the contrary their IR to trouble from an unbearable noise, if are measured with MLS technique.
As for the ratio signal and noise are useful the same argumentations presented in the description of Generate MLS Signal module, which here are repeated.
It is not repeated neither the table which shows the configurations of taps used by the module, identical to the ones used by Generate MLS Signal (except for the oders 20 and 21, here not used).

Using the module

You must create a new file, initially empty, through the function New of Edit menu. The file must be mono and of desired sampling frequency for IRS signal.
� INCORPORA PaintShopPro ���
Then we let the generation function of IRS signal start, pushing the corresponding button, as showed sidewise, on Cool Edit toolbar, or selecting IRS Signal from Generate menu.
The module displays the insert data dialog box, illustrated in Fig. 17, in which the user must set up the requested parameters and then push OK button, if he likes proceeding or on the opposite Cancel.

�

Fig. 17	Insert data dialog box of Generate IRS Signal module.

The meaning of the control present in the dialog box is the following:
IRS Order selecting, between the suggested names of Drop down list of combo box, the one corrsponding to desired IRS order and taps configurations.
Having pushed OK button, the module goes on achieving the necessary computings, displaying a progress meter which informs step by step the user about the calculations percentage progress and gives a valutation of the necessary time for their finishing.
The progress meter let moreover the user suspend or give up the computings in every moment.
At the end of computings, it is displayed the generated IRS sequence in the graphic window.
The signal used like stimulus in a measure of IR through IRS technique is the continuous repetition of a period of a same IRS. That is performed selecting Loop Mode from Options menu. And then pushing Play button.
The operations to perform for the measure of IR through IRS technique are similar at all to the ones used for IR measures through MLS technique, for this reason we refer to the description of Generate MLS Signal module for a deeper explanation of the technique of same measure.

Description of the implemented algorithm from the module

XfmSetUp () function displays the insert data dialog box. To the selected name are corresponding the order and the number of taps of the sequence, which are copied in the user structure to which refers hUserData field of ci pointer at variables of COOLINFO type. Through ci the set up parameters are passed to XfmDo () function.
The user structure of this module, so called MLS, is so defined:

typedef struct mls_tag
{
	int MLSorder; // ordine della sequenza IRS selezionata
	int MLStaps; // numero di taps della sequenza IRS selezionata
	DWORD Selected; // dimensione dell’area selezionata,
// utile nel caso la generazione non vada a buon fine
} MLS;

XfmDo () function allocates all necessary data structure for the process and proceedes to generate IRS.
First of all it is created a binary MLS with the same order and configuration of taps of desired IRS.
It is converted into a bipolar IRS and then transfered into Cool Edit with the same instructions:

...
// converto gli 0 e 1 in 32767 e -32767 per i campioni pari
// e gli 0 e 1 in 32767 e -32767 per i campioni dispari	
Lp1=L+1;
for (i=1;i<=L;i+=2)
{
MLSdata[L+i]=-(MLSdata[i]=(MLSdata[i]==0)?32767:-32767);
	MLSdata[Lp1+i]=-(MLSdata[i+1]=(MLSdata[i+1]==0)?-32767:32767);
}	
WriteData(ci,cMLSdata,losamp*2,L*4);
...

The data structure are deallocated and the performance of the module is finished. Cool Edit supplies displaying the soon generated frequency in the graphic window.

Testing the module

The module is initially tested checking that the spectrum of sequences from it generated were white, as it must be the spectrum of a pseudo-causal sequence. For the sequence of low order has been also made a comparison with similar sequences handly generated.
At the end, when its twin Deconvolve IRS Signal has been completed, the two modules have been tested at the same time measuring different impulse response through IRS technique using sequences of different taps and order.
�
�Deconvolve IRS Signal

This module computes the IR of a system. The sequence on which it works, is the response, sampled, of the analysed system to a IRS signal of stimulus.
The IR is achieved through circular cross-correlation of the output of the analysed system through the stimulus signal.
The determined IR is stored in the Clipboard. In this way, the present data in the graphic window are not troubled and are available for next studies, on the contrary IR can be copied in another instance of Cool Edit and saved on file or used directly from Clipboard from Convolve With Clipboard module for the convolution of an audio signal.
The module calculates also stereo IR such as binaural, starting from sequences of stereo samples. In this case the operation of re-graduation and circular translation performed by algorithm are made in such way that can’t trouble the ratio of wideness existing between the two channels of IR and their temporal coherence.

Using the module

First of all it is necessary to have the response of the system to an excitement IRS signal of such order to avoid time aliasing. To improve the S/N ratio we would have to use an excitement IRS signal of the highest disposable order. As usual, we adopt a compromise solution, using like an excitement signal a sequence of such order to give a good S/N ratio in acceptable measures times and elaboration.
In phase of performing an answering of the studying system, you must consider that the more is the number of performed periods of sequence, on which we can do the pre-averaging, the more is the S/N ratio of the measured IR (clearly is greater also the space on requested disk, at least untill the end of the measure, to store the achieved signal).
Having obtained the response of the analysed system, we select, also in an approximately way, a number of periods, on which the module will do the pre-averaging, which we think they could guarantee the desired S/N ratio in the measured IR.
� INCORPORA PaintShopPro ���
Then we let start the computing function of IR, pressing the corresponding button, showed sidewise, on Cool Edit toolbar or selecting Deconvolve IRS Signal from Transform menu.
The module displays the insert data dialog box, showed in Fig. 18, in which the user must lay out the desired parameters and then pushing OK button if he wants to proceed or Cancel on the contrary.

�

Fig. 18	Insert data dialog box of Deconvolve IRS Signal.

The meaning of the checks present in the dialog box is the following:
IRS Order: selecting, between the proposed names of Drop down list of combo box, the same name selected during the generation of excitement signal. All that warranties that the IRS sequence used for the deconvolution through cross-correlation is identical to the excitement signal.
Remove DC component: marking check box if you want to remove the eventual continuous component present in the measured IR.
Having pushed OK button the module goes on performing the necessary computations, displaying a progress meter which informs progressively the user about the percentage computations progress and gives a valutation of the necessary time for their finishing. The progress meter let moreover the user suspend or give up the computations in every time.
After having finished the calculations, the module displays the final report dialog box, as showed in Fig. 19.

�

Fig. 19	Final report dialog box of Deconvolve IRS Signal.
In this one are displayed informations about the measured IR: its length in samples, the number of channels, the frequency of sampling, the number of periods on which has been performed the pre-averaging, the time used for its determination, the float value to which IR has been re-graduated.
The dialog box also informs that the measured IR has been stored successfully in the Clipboard.
The sequence used for the determination of IR isn’t at all modified by the process and remains displayed in COOL EDIT graphic window.
For the determination of a IR of equal length, the necessary times for the deconvolution of a IRS signal are considerably higher than those necessary for the deconvolution of a MLS signal, but moreover always acceptable. On a PC with a Pentium processor at 60 MHz with a compressed hard disk (which slackens the execution of the algorithm) are necessary about 21 seconds for the deconvolution of a IRS of 16 order.

Description of the implemented algorithm from the module

The algorithm of deconvolution of IRS signal, even if it performs moreover a circular cross-correlation between IRS and the sequence of the exit of the system, is completely different from that of deconvolution of MLS signal; it performs the circular cross-correlation in the domain of the frequency, exploiting the FTT.
XfmSetup () function displays the insert data dialog box. To the selected name are corresponding the order and the number of taps of IRS signal, which are copied in the user structure to which refers hUserData field of the pointer ci at variables of COOLINFO type. If the portion of signal selected by the user in the graphic window has got a lower length than that of a period of set up IRS, it is displayed a suitable message and the performance of the module is interrupted.
The user structure of this module named MLS is so defined:

typedef struct mls_tag
{
	char Channels; 	// canali della IR determinata
	int MLSorder; 	// ordine della IRS utilizzata per la deconvoluzione
	int MLStaps; 	// numero di taps della IRS utilizzata per la deconvoluzione
	char RemoveDC;	// flag per la rimozione della componente continua della IR
	int numblocks; 	// numero di periodi su cui si è effettuato il pre-averaging
	float Xmax;		// valore rispetto a cui la IR è stata riscalata
 DWORD eltime;	// tempo impiegato per la deconvoluzione, in millisecondi
	DWORD SampleRate; // freq. di campionamento
	HWND hWnd;		// dati della finestra chiamante di Cool Edit
	HINSTANCE hInst;	
} MLS;

XfmDo () function allocates the necessary data structure for the operation of deconvolution and then performs the following instructions:
...
L=power(2,MLSorder)-1;
Ltran=4*power(2,MLSorder);
...
// avvio il timer
 tstart=GetTickCount();
 // creo il progress meter
 ProgressCreate(ci,"Generating IRS sequence...",NULL);
 // genero il segnale MLS sotto forma di 0 e 1
 ok=genMLS(taps,ntap,lirs,ci);
 ProgressDestroy(ci);
 if (ok)
 {
 	DWORD Lp1,L2p1;
 	float a;
	 // genero la IRS, lunga 2*L,
	 // convertendo gli 0 e 1 in 32767 e -32767 per i campioni pari
	 // e gli 0 e 1 in 32767 e -32767 per i campioni dispari	
	 Lp1=L+1;
	 for (i=1;i<=L;i+=2)
	 { // nota che chiamo dispari 2,4,6,8... perchè in realtà il vettore
	 	// che quì comincia con indice 1 dovrebbe iniziare con indice 0.
 firs[L+i]=-(firs[i]=(lirs[i]==0)?32767.0f:-32767.0f); // pari
	 	firs[Lp1+i]=-(firs[i+1]=(lirs[i+1]==0)?-32767.0f:32767.0f); // dispari
 }
 // la inverto temporalmente perchè devo fare una cross-correlazione
 L2p1=L*2+1;
 for (i=1;i<=L;i++)
 {
 	a=firs[i];
 	firs[i]=firs[L2p1-i];
 	firs[L2p1-i]=a;
 }
 // azzero il resto di firs
 fZeroPadding(&firs[L2p1],(Ltran-2*L));
 	ProgressCreate(ci,"Transforming IRS sequence...",NULL);
 // faccio la FFT di firs
 	realft(firs,Ltran,1);
 	// a questo punto firs contiene la FT della
 	// IRS invertita temporalmente
	 // aggiorno il progress meter
 	ProgressMeter(ci,1,1);
		if (*ci->lpProgressCanceled) ok=0;
	 ProgressDestroy(ci);
	}
 if (ok)
 {
		ProgressCreate(ci,"Averaging data...",NULL);
	 // leggo i dati da deconvolvere facendone la media
	 // essi vengono memorizzati nei rispettivi vettori
	 // con indirizzi da 0 a (2*L-1)
	 ok=ReadAndAverageData(cdata,ldataL,ldataR,2*L,&blocks,ci);
	 ProgressDestroy(ci);
	}	
 if (ok)
 {
 	DWORD L2=L*2;
	 // li converto in float creandone contemporaneamente una copia
	 // nelle locazioni da 2*L a (4*L-1)
	 if (Stereo)
	 {
	 	for (i=0;i<L2;i++)
	 	{
	 		fdataL[L2+i]=(fdataL[i]=(float)ldataL[i]);
	 		fdataR[L2+i]=(fdataR[i]=(float)ldataR[i]);
	 	}
	 // azzero il resto di fdataR
 fZeroPadding(&fdataR[L*4],4);
	 }	
 else
	 	for (i=0;i<L2;i++) fdataL[L2+i]=(fdataL[i]=(float)ldataL[i]);
	 // azzero il resto di fdataL
 fZeroPadding(&fdataL[L*4],4);
	 // creo un nuovo progress meter
	 ProgressCreate(ci,"Deconvolving IRS",NULL);
	 // INIZIO della deconvoluzione vera e propria
	 // faccio la FFT dei dati
	 realft(fdataL-1,Ltran,1);
 	ProgressMeter(ci,1,3*Channels);
		if (*ci->lpProgressCanceled) ok=0;
		if (ok)
		{
		 // li filtro con firs
		 realfilter(fdataL,firs+1,Ltran);
	 	ProgressMeter(ci,2,3*Channels);
			if (*ci->lpProgressCanceled) ok=0;
		}
		if (ok)
		{
	 	// faccio la IFFT dei dati filtrati
	 	realft(fdataL-1,Ltran,-1);
	 	ProgressMeter(ci,3,3*Channels);
			if (*ci->lpProgressCanceled) ok=0;
		}	
		// se i dati sono stereo ripeto il tutto per il canale destro
		if ((Stereo)&&(ok)) 		
		{
		 // faccio la FFT dei dati
		 realft(fdataR-1,Ltran,1);
	 	ProgressMeter(ci,4,3*Channels);
			if (*ci->lpProgressCanceled) ok=0;
		}
		if ((Stereo)&&(ok))
		{
		 // li filtro con firs
		 realfilter(fdataR,firs+1,Ltran);
	 	ProgressMeter(ci,5,3*Channels);
			if (*ci->lpProgressCanceled) ok=0;
		}
		if ((Stereo)&&(ok))
		{
	 	// faccio la IFFT dei dati filtrati
	 	realft(fdataR-1,Ltran,-1);
	 	ProgressMeter(ci,6,3*Channels);
			if (*ci->lpProgressCanceled) ok=0;
		}	
	 // FINE della deconvoluzione vera e propria
		ProgressDestroy(ci);
	}
	if (ok)
	{
	 char clipok=1;
	 DWORD L2m1=L*2-1;
	
	 // a questo punto i dati sono float, quelli utili
	 // per la ricerca del massimo si trovano nelle
	 // posizioni da (2*L-1) a (3*L-2) e sono L
	 // cerco il massimo e la sua posizione
	 if (lpAmp->RemoveDC) DCOffsetL=1.0f;
	 FindXmax(&fdataL[L2m1],L,&Xmax,&MaxPosL,&DCOffsetL);
	 MaxPosL+=L2m1; // aggiusto il valore con l'offset L2m1
	 if (Stereo)
	 {
	 	if (lpAmp->RemoveDC) DCOffsetR=1.0f;
	 	FindXmax(&fdataR[L2m1],L,&Xmax,&MaxPosR,&DCOffsetR);
	 	MaxPosR+=L2m1; // aggiusto il valore con l'offset L2m1
	 	// tra le due posizioni del massimo, se la distanza tra i
	 	// due massimi è < di metà sequenza,tengo la minima.
	 	// La pos. del massimo viene memorizzata
	 	// in MaxPosL.
	 	if (MaxPosR>MaxPosL)
	 		{if ((MaxPosR-MaxPosL)>((L+1)/2)) MaxPosL=MaxPosR;}
	 	else
	 		{if ((MaxPosL-MaxPosR)<((L+1)/2)) MaxPosL=MaxPosR;}
	 }
	 // se la lunghezza della sequenza lo permette
	 // scalo il massimo di 1500 punti
	 if (MLSorder>=12)
	 {
	 	MaxPosL-=1500;
	 	if (MaxPosL<L2m1) MaxPosL+=L;	
	 }	
		// se il valore massimo trovato è zero allora lo pongo uguale a 1 per non avere
		// errori di divisione per zero.
		if (Xmax==0.0f) Xmax=1.0f;
	 // converto i dati in int riordinandoli
	 FloatToIntOrdered(fdataL,fdataR,intbuf,Xmax,MaxPosL,L,DCOffsetL,DCOffsetR);
	 // scrivo i dati nella clipboard		...
		...
	}

First of all it is produced a IRS sequence identical to the one used like stimulus of the studying system.
The IRS sequence is temporally reversed, as the correlation of the two sequences coincides in the convolution of a sequence with the obtained sequence from the temporal inversion of the other one.
The performed sequence is extended with zeroes till it reaches the length of 4*2IRSorder samples, necessary for the computing of the circular cross-correlation and is subjected to FTT.
At this point it is performed the pre-averaging on all complete periods, included the portion of signal selected by the user. The pre-averaging is performed summing up the samples of different periods which occupy the same position in the period. The additions are included in a long vector. It is therefore possible to execute the pre-averaging, summing up until 65536 different periods without having overflow.
After the pre-averaging the long vector, of duration (2*L-1) samples (where L= 2IRSorder-1) it is converted into a float vector. To simulate the circular correlation, during the conversion it’s created a pair of the first (2*L-1) samples of the vector in the locations of the same one with index from 2*L to (4*L-1). The last two samples of the vector (on the whole long 4*2IRSorders samples) are equal to zero.
It begins here the really deconvolution. We performs the FTT of the obtained vector and we multiply it by the corresponding frequencies, with the FTT of IRS calculated before. Then we do the IFTT of the result. The FTT and IFTT are all of 4*2IRSorder samples length.
At the end of the deconvolution the data are float. The result of the deconvolution of IRS is constituted by 2 subsequences corrsponding one to the determining IR and the other one to the same IR changed of signe. The two subsequences are in temporal correct order but set up circulary in the vector, starting from an unknown location of the same one, as the deconvolution happens in an asynchronic way. It is necessary to fix a principle to determine which is the beginning of the IR. We have chosen, likewise it has been done for Deconvolve MLS Signal module, to look for the higher point of IR and then to consider the sample of 1500 samples preceding the maximum, like beginning of the IR. As the first samples (2*L-1) of vector must be removed, because they don’t coincide with the desired circular cross-correlation, and that the samples from (3*L-2)-point further are reply at inverted signal of L samples present in the locations with index which varies between (2*L-1) and (3*L-2), the search of the maximum is limitated to these ones.
We fix that the L samples of the vector starting from the sample of 1500 samples preceding the found maximum are the searched IR (or the same changed of signe, doesn’t matter).
FloatToIntOrdered () function supplies to convert the IR from float into int, removing at the same time, if requested, the continuous component of IR.
The converted IR in wholes is stored in the Clipboard. It is then displayed in the final report dialog box which finishes this module.
�Testing the module

The module is tested together with Generate IRS Signal module, measuring impulse responses of different nature and length, using different IRS.
�
�Acoustical Parameters

The aim of this module is to compute the acoustical parameters of an impulse response. The objective acoustical descriptions calculated from this module have been selected with care, choosing between the wide fan of the defined parameters from Sabine to nowadays, the ones more common used in the field of the acoustical plan and more precisely:

	� INCORPORA Equation.2 ���	(7.1)

	� INCORPORA Equation.2 ���	(7.2)

	� INCORPORA Equation.2 ���	(7.3)

	� INCORPORA Equation.2 ��� [s]	(7.4)

and three different reverberation times EDT, T20 and T30, extracting from the extrapolation at -60 dB of the middle slope of the decay-curves respectively on intervals:
EDT	0 dB - 10 dB
T20	5 dB - 25 dB
T30	5 dB - 35 dB
To those we add a further time reverberation RTU, whose definition interval is specified by the user.

Using the module

The user must load in Cool Edit the file containing the impulse response which he intends to analyse. The IR can be mono or stereo, in this last case, are calculated and displayed the acoustical parameters of both channels. The temporal proceeding of the loaded signal is displayed in the graphic window of the program. At this point we need to select the part of IR we are interested on (which can be the whole loaded IR or one of its part).
�
Then we let start the computing function of acoustical parameters pushing the corresponding button, showed sidewise, on Cool Edit toolbar or selecting Acoustical Parameters from Transform menu.
The module displays the insert data dialog box, described in Fig. 20, in which the user must set up the desired parameters and then push OK button if he wants to proceed or on the contrary Cancel.

�

Fig. 20	Insert data dialog box of Acoustical Parameters module.

The meaning of the controls present in the dialog box is the following:
User Defined Reverberation Time Extremes: in the two edit boxes we must specify the lower and higher end in dB with real values and negative or null, of the definition interval of personalised reverbering time (es. -10, -25).
First Arrival Time Treshold: in the edit box we need to insert the value used like treshold to determine the moment of arrival of the direct wave (FAT), essential for the computing of acoustical parameters. As the samples of IR are wholes at 16 bits, the value to introduce is a whole included between 0 and 32767. For a correct determination of FAT, the value of treshold must be reasonably higher than the maximum absolut value of the noise present at the beginning of the IR. Usually a value near to 10.000 warranties goods results. It is possible to fix the FAT handly,selecting in the graphic window, before triggering Acoustic Parameters function, a portion of IR which starts from the desired FAT and then setting up a treshold value equal to 0 in the insert data dialog box.
Noise Correction: marking the check box if you desire the automatic correction of the noise in the determination of the reverberation -decay curve.
Having pushed OK button, the module goes on executing the necessary computations, displaying a progress meter, which informs, step by step, the user about the percentage calculations progress and gives a valutation of the necessary time for their finishing. Moreover the progress meter permits the user to suspend or give up the computings in every moment.
Having performed the computations, the module displays the final report dialog box, showed in Fig. 21.

�

Fig. 21	Final report dialog box of Acoustical Parameters.

In this one are displayed at the same time, in a table-form the acoustical parameters of 4 of the 11 bands on which we have performed the analysis.
Such bands are: a large band called Lin which includes the whole spectrum of IR and 10 bands of octave of which is indicated the frequency of centre-band (31.5 Hz, 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1kHz, 2kHz, 4kHz, 8kHz, 16kHz).
They are also displayed the set up ends from the user to calculate the reverberation time user (RTU). Corresponding to reverberation times, are displayed the relative r coorelation coefficients.
The correlation coefficient indicates how much the corresponding decay curve gets near a perfect straight line in the interval of indicated decay. A correlation coefficient equal to -1 indicates a perfect correspondence between decay curve and straight line. A correlation coefficient higher that -0.95 indicates an unlinear reverberation decay which gets suspicious the value of computed revebering.
The dialog box, in addition to the OK button which permits the close, contains the following checks:
L, 31.5, 63, 125, 250, 500, 1k, 2k: pushing these buttons are changed the 4 displayed bands. The new bands displayed are the ones with a centre-band frequency corresponding to the name of the pressed button, which is unemployed (as it is unemployed the corresponding button to the previous bands), and the following three ones. One or more of these buttons can be unemployed if the frequency of sampling of IR is too low and doesn’t permit then the computing of acoustical parametrs in the higher band to them corresponding.
Right Channel Parameters: pushing this button you passed to displaying the acoustical parameters of the right channel of a stereo IR. When the acoustical parameters are the ones of the right channel, the name of the button becomes Left Channel Parameters and its pushing consents displaying the acoustical parameters of the left channel of IR. If the IR is mono, as in the case of Fig. 21, the button is unemployed.
Copy to Clipboard: pushing this button the acoustical parameters of the analysed IR are copied, in a table-form, in the clipboard in CF_TEXT format. All that consents their migration in another Windows application like Excel, Word or the simple Notepad.

Description of the implemented algorithm from the module

XfmSetup () function displays the insert data dialog box. The set up parameters from the user are copied in the user structure, to which refers hUserData field of ci pointer at variables of COOLINFO type. Through ci the set up parameters are passed to XfmDo () function. The user structure of this module, called MLS is so defined:

typedef struct mls_tag
{
	float fRTUdBstart;	// estremo inferiore intervallo RTU utente
	float fRTUdBend;	// estremo superiore intervallo RTU utente
	int iThreshold;		// soglia per la determinazione del FAT
	char cNoiseC;		// flag = TRUE se si desidera la Noise Correction
	char cBand;			// banda visualizzata di partenza
	char cChannel;		// canale visualizzato
	long fAP;			// puntatore ai parametri
	long cAP; 		// puntatore ai flags dei parametri 	
	HWND hWnd;			// dati della finestra chiamante di Cool Edit
	HINSTANCE hInst;	
} MLS;
XfmDo () function allocates the necessary data structure for the processing and initializes a vector with the data or IR supplied by Cool Edit and transformed into float. To store the computed parameters are allocated the two following vectors:

...
#define NPAR 11		// numero parametri
#define NBANDS 11	// numero bande
...

float fAP[NPAR*NBANDS*2]; // parametri acustici
char cAP[NPAR*NBANDS*2+NBANDS]; // validità o meno dei parametri acustici

fAP [] is destined to the storage of flags, one for each parameter, in ordinal corresponding positions to those of the parameters, which point out the availability o not availability of the parameters. The last NBANDS flags point out the correction or not correction of the noise of the corresponding bands. The type of chosen arrangement for parameters and flags simplifies in a considerable way the operations of parameters diplaying in the final report dialog box and their coping in the Clipboard.
In XfmDo () function a cycle determines the FAT of each IR channel and submits the data to a filtering operation in octave bands, performed through a IIR (Infinite Impulse Response) at 6 poles. The data of a band are stored in fIRFilt vector and then it is recalled the computing processing of acoustical parameters CalculateParameters (), here above reported.

void CalculateParameters(float huge *fIRFilt,float *fAP,char *cAP,MLS FAR *lpAmp,long FAT,double NC,COOLINFO far *ci)
{
	long IRL=ci->dwHiSample-ci->dwLoSample+1; // lunghezza imp. res.
	double tP2; // parametro per il calcolo del tempo baricentrico
	long i;
 float r;
	float fSamp=(float)ci->lSamprate;

 // calcolo l'integrale di Schroeder
 CalculateSchInt(fIRFilt,IRL,FAT,NC,&tP2,ci);

 // a questo punto
 // procedo al calcolo effettivo di alcuni parametri
 // 0: C50, occorre che la IR, a partire da FAT, sia lunga almeno 50ms
 // 2: D50, occorre che la IR, a partire da FAT, sia lunga almeno 50ms
 if(((IRL-FAT)/fSamp)<0.05f) {cAP[0]='n'; cAP[2]='n';}
 else
 { // C50
 	fAP[0]=(float)(10.0*log10((fIRFilt[FAT]-fIRFilt[FAT+(long)(0.05*fSamp)])/fIRFilt[FAT+(long)(0.05*fSamp)]));
		cAP[0]='y';
		// D50
 	fAP[2]=((fIRFilt[FAT]-fIRFilt[FAT+(long)(0.05*fSamp)])/fIRFilt[FAT]);
		cAP[2]='y';
 	// esprimo D50 in percentuale
 	fAP[2]*=100.0f;
 }	
 // 1: C80, occorre che la IR, a partire da FAT, sia lunga almeno 80ms
 if(((IRL-FAT)/fSamp)<0.08f) cAP[1]='n';
 else
 {
 	fAP[1]=(float)(10.0*log10((fIRFilt[FAT]-fIRFilt[FAT+(long)(0.08*fSamp)])/fIRFilt[FAT+(long)(0.08*fSamp)]));
		cAP[1]='y';
 }	
 // 3: TS, si può calcolare sempre (N.B. è in ms e non in s!!!)
 fAP[3]=(float)(tP2*1000.0/fIRFilt[FAT]); cAP[3]='y';

	// trasformo l'integrale di Schroeder in dB
	// per il calcolo dei tempi di riverbero
	for(i=0;i<IRL;i++) fIRFilt[i]=dB(fIRFilt[i]);

	// 4: EDT-10dB
	reverb(fIRFilt,IRL,FAT,(char)(NC!=0.0),0.5f,10.0f,fSamp,(fAP+4),&r);
	if(fAP[4]!=0.0f) cAP[4]='y';
	else cAP[4]='n';
	
	// 5: RT-20dB
	reverb(fIRFilt,IRL,FAT,(char)(NC!=0.0),5.0f,20.0f,fSamp,(fAP+5),(fAP+6));
	if(fAP[5]!=0.0f) {cAP[5]='y';cAP[6]='y';}
	else {cAP[5]='n';cAP[6]='n';}

	// 76: RT-30dB
	reverb(fIRFilt,IRL,FAT,(char)(NC!=0.0),5.0f,30.0f,fSamp,(fAP+7),(fAP+8));
	if(fAP[7]!=0.0f) {cAP[7]='y';cAP[8]='y';}
	else {cAP[7]='n';cAP[8]='n';}

	// 9: RT-USER
	reverb(fIRFilt,IRL,FAT,(char)(NC!=0.0),(-(lpAmp->fRTUdBstart)),(lpAmp->fRTUdBstart-(lpAmp->fRTUdBend)),fSamp,(fAP+9),(fAP+10));
	if(fAP[9]!=0.0f) {cAP[9]='y';cAP[10]='y';}
	else {cAP[9]='n';cAP[10]='n';}
}

In the pointer cAP and fAP are passed to the proceding the adresses of the locations in which to store the first parameter (C50) and the corresponding flag of the band in the question. To the procedure are passed also the arrival instant of the direct wave in FAT, the length of IR in IRL and the value NC for the correction of the noise of Schroeder’s integral.
You can notice the unusual use of Schroeder’s integral also for the computing of parameters C50, C80, D50, and TS, further than the reverberation times. You can observe moreover the transformation into dB of Schroeder’s whole integral before calculating the reverberation times, so that it can be performed only once.
NC is the middle energy of the last sixteenth of IR, which we think includes only the noise. The correction of the noise, when it is requested by the user, is performed only if:

	� INCORPORA Equation.2 ���	

where B is the length of the current band (B = centre-band frequency*0.707) and the first term is the duration, in seconds, of the last sixteenth of IR. In the opposite case, the value NC should’nt be so accurate and the noise correction is not applied. That is pointed out at the calculation function of Schroeder’s integral putting NC = 0.0, without carrying out the NC calculation function here above reported.

double NoiseCorrection(float huge *fIRFilt,long IRL)
{
	double NC=0.0;
	double sample;
	long lIRL16=IRL/16;
	long i;
	
	// calcolo la media delle energie dell'ultimo sedicesimo di IR
	for(i=(IRL-lIRL16);i<IRL;i++)
	{
		sample=fIRFilt[i];
		NC+=sample*sample;
	}
	NC/=lIRL16;
	
	return NC;	
}

After having performed the parameters calculation, XfmDo () function calls the function for the final report dialog box displaying.
Here above is reported the function AcousticsToClipboard () together with the two functions from it recalled, which executes the copying in the clipboard in CF_TEXT of IR parameters, performed by pushing Copy to Clipboard button in the final report dialog box.
...
#define CRLFDEF char crlf[]={0x0d,0x0a,0}
#define CRLF strcat(Clipdata,crlf)
#define VTABDEF char vtab[]={0x09,0}
#define VTAB strcat(Clipdata,vtab)
...

void CopyParameters(float far *fAP,char far *cAP,char *Clipdata)
{
	CRLFDEF;
	VTABDEF;
	char Lin[]="--";
	char *Bands[]={"Lin","31.5","63","125","250","500","1K","2K","4K","8K","16K"};
	char *Pars[]={"C50 [dB]","C80 [dB]","D50 [%]","TS [ms]","EDT [s]","RT20 [s]","r RT20",
				 "RT30 [s]","r RT30","RTU [s]","r RTU"};
	char textbuf[20];
	int i,i2;
	
	// scrivo la prima riga, quella con le bande
	strcat(Clipdata,"Band");
	for(i=0;i<NBANDS;i++) {VTAB;strcat(Clipdata,Bands[i]);}
	CRLF;
	
	// scrivo i parametri
	// titolo
	strcat(Clipdata,"Parameters");CRLF;
	// parametri: nome + parametro banda per banda
	for(i=0;i<NPAR;i++)
	{
		strcat(Clipdata,Pars[i]);
		for(i2=0;i2<NBANDS;i2++)
		{
			VTAB;
			if(cAP[(i2*NPAR)+i]=='n') strcat(Clipdata,Lin);
			else
			{
				FloatToString(textbuf,fAP[(i2*NPAR)+i],PARLEN);
				strcat(Clipdata,textbuf);
			}
		}
	 CRLF;
 }
}

void CopyNoiseC(char far *cAP,char *Clipdata,char NoiseC)
{
	CRLFDEF;
	VTABDEF;
	char Lin[]="--";
	int i;
	
	// titolo
	CRLF;
	strcat(Clipdata,"Noise Correction:");
	// Noise Correction, se non è stata selezionata metto --
	for(i=0;i<NBANDS;i++)
	{
		VTAB;
		if(NoiseC)
			if(cAP[i]=='y') strcat(Clipdata,"yes");
			else strcat(Clipdata,"no");
		else strcat(Clipdata,Lin);
	}
	CRLF;
}

void AcousticsToClipboard(float far *fAP, // parametri acustici
						 char far *cAP,char *Clipdata,
 char nChan,char NoiseC,float RTUstart,float RTUend)
{
	CRLFDEF;
	char *Channel[]={"Left Channel","Right Channel"};
	char i;
	char ftext[20];
	
 // titolo
 strcpy(Clipdata,"OCTAVE BAND ACOUSTICAL PARAMETERS");
 CRLF;CRLF;

 // copio i parametri e la noise correction nella Clipboard
 for(i=0;i<nChan;i++)
 {
 	// nome canale
 	if(nChan==2) {strcat(Clipdata,Channel[i]);CRLF;}
 	// parametri canale
 	CopyParameters((fAP+i*NPAR*NBANDS),(cAP+i*NPAR*NBANDS),Clipdata);
 	// Noise Correction, uguale per tutti i canali
 	CopyNoiseC((cAP+2*NPAR*NBANDS),Clipdata,NoiseC);
 	// definizione di RT User, uguale per i due canali
 	CRLF;
	 strcat(Clipdata,"RTU = RT User (");
	 FloatToString(ftext,RTUstart,6);
	 strcat(Clipdata,ftext);
	 strcat(Clipdata," dB, ");
	 FloatToString(ftext,RTUend,6);
	 strcat(Clipdata,ftext);
	 strcat(Clipdata," dB)");
	 CRLF;CRLF;
 }
}

Clipdata is a pointer to the allocated vector in the management procedure of the final report dialog box. The parameters are copied in a vector in a format text, then in the management process of the final report dialog box, the property of vector is transfered to Windows like new containt of Clipboard, specifying the CF_TEXT format.
To copy the data in the Clipboard in a table form can cause their migration into other Windows applications like Excel, Word or the simple Notepad.
Fig. 22 shows the same parameters of Fig. 21, migrated to Excel. The migration simply happens to copy them in the Clipboard, pushing the button Copy to Clipboard in the final report dialog box of Acoustical Parameters module and then carrying out the function Paste from Excel Edit menu.
�

Fig. 22	Migration to Excel of data in Fig. 21.

testing the module

The module is tested analyizing the same IR through the same module and through the program MLSSA.
The following table shows the achieved results in octave band with 4kHz centre-band frequency, studying the IR contained in aula-04.tim file, at first through the new module of Cool Edit Acoustic Parameters and then through the function Calculate Acoustics of MLSSA program.
The arrangement of the results is excellent. The higher percentage deflections take place in the first 5 parameters, whose value is strictly derived from FAT and are totally charged with a different determination of the same FAT, caused by different tresholds set up in the two programs.
Parametro�Cool Edit�MLSSA�Scarto %��C50 [db]�5.101�5.26�� =(b2-c2)/b2*100 \# "0,00%" �-3.12%���C80 [db]�8.065�8.15�� =(b3-c3)/b3*100 \# "0,00%" �-1.05%���D50 [%]�76.4�77.1�� =(b4-c4)/b4*100 \# "0,00%" �-0.92%���TS [ms]�34.63�33.7�� =(b5-c5)/b5*100 \# "0,00%" �2.69%���EDT [s]�0.7663�0.752�� =(b6-c6)/b6*100 \# "0,00%" �1.87%���RT20 [s]�0.9033�0.901�� =(b7-c7)/b7*100 \# "0,00%" �0.25%���r RT20�-1�-1�0.00%��RT30 [s]�0.8903�0.894�� =(b9-c9)/b9*100 \# "0,00%" �-0.42%���r RT30�-1�-1�� =(b10-c10)/b10*100 \# "0,00%" �0.00%���RTU [s]�0.9008�0.898�� =(b11-c11)/b11*100 \# "0,00%" �0.31%���r RTU�-0.9992�-0.999�� =(b12-c12)/b12*100 \# "0,00%" �0.02%���

Tab. 2	Cool Edit - MLSSA comparison.
�Inverse Filter

This module, having a certain IR, determines the inverse filter through the method of the square minima, very clear illustrated in the 2 Ch. of this dissertation.
The principal aim of the inverse filter in such way performed is the de-reverberation of a recorded audio signal, having known the IR of the constituted system from a sound-environment-microphone source.

Using the module

The user must load in Cool Edit the file containing the impulse response of which he wishes to determine the inverse filter. The IR can be mono or stereo, in this last case, are computed the inverse filters of both channels. The temporal course of the loaded signal is displayed in the graphic windows of the program. At this point, we need to select the part of IR we are interested on (that can be the whole loaded IR or one of its portion).
�
Then we let start the computing function of acoustical parameters, pushing the corresponding button, showed sidewise, on Cool Edit toolbar or selecting Inverse Filter from Transform menu.
The module displays the insert data dialog box, showed in Fig. 23, in which the user must set up the wished parameters and then push OK button if he wants to goes on, on the contrary Cancel.

�

Fig. 23	Insert data dialog box of Inverse Filter module.

In the dialog box are showed summarized information above the portion of impulse response, selected by the user (frequency of sampling, number of channels, length in samples).
The meaning of the checks present in the dialog box is the following:
Inverse filter length: fixing in this edit box the length which we desire for the inverse filter. Usually higher lengths can warranties best results but present higher processing times. The module suggests, like default value, a value equal to the double of IR length minus a sample. As usual, this value achieves good results.
Delta delay: setting up in this edit box the delay l, in which to place Dirac’s d. The module proposes like default value, a value equal to IR length, that is to say Dirac’s (is default placed corresponding to the last sample of IR).
Having pushed OK button, the module goes on performing the necessary calculations, displaying a progress meter which informs the user step by step above the computing percentage processing and gives a valutation of the necessary time for their finishing. The progress meter moreover let the user to suspend or give up the calculations in every moment.
Having performed the computings, the module displays the final report dialog box, showed in Fig. 27.

�

Fig. 24	Final report dialog box of Inverse filter.

In it are displayed information about the determined inverse filter: its length in samples, the number of channels, the frequency of sampling, the time used for its determination. The dialog box informs also that the inverse filter has been stored with success in the Clipboard. The sequence used for the determination of the filter is not at least modified by the processing and remains displayed in Cool Edit graphic window.
The necessary times to determine the inverse filter are proportional to the square of the chosen length for the same one. The determination of the inverted filter of IR of considerable duration, such as the ones of reverbering environments, asks then for really long processing times.
In case of obtained inverted filter is not satisfactory, we need to proceed to a new determination of the same one, changing the set up values for its duration and/or position of Dirac’s d.

Description of the implemented algorithm from the module

XfmSetup () function displays the insert data dialog box, computing the default value proposed for the parameters. The set up values from the user for the parameters are copied in the user structure, to which refers the hUserData field of ci pointer at variables of COOLINFO type. Through ci, the set up parameters are passed to XfmDo () function.
The user structure of this module, called IFS, is so defined:

typedef struct if_tag
{
	long IFLen;		// lunghezza del filtro inverso selezionata dall’utente
	long DeltaDel;	// posizione della delta di Dirac selezionata dall’utente
 DWORD eltime;	// tempo impiegato per la determinazione del filtro, in millisecondi
	HWND hWnd;		// dati della finestra chiamante di Cool Edit
	HINSTANCE hInst;	
} IFS;

XfmSetup () function allocates the necessary data structure for the determination of inverted filter and then, for each channel, calls InvertFilter () function here reported:

char InvertFilter(float huge *AutoCorr, // per il calcolo dell'autocorrelazione, contiene
// imp.res.
			 float huge *y, // termini noti (imp. res. ribaltata + ritardata +
// zero padding)
			 float huge *x, // filtro inverso
			 long ACL, // lunghezza AutoCorr (potenza di 2)
			 long n, // lunghezza filtro inverso
			 long DD, // delta delay
			 long IRL, // lunghezza imp. res.
			 COOLINFO far *ci)
{
	long i,ii;
	char ok=TRUE;

// copio i dati da AutoCorr a y con inversione temporale+ritardo DD+zero padding
	DD++; //perchè y parte da 1 e voglio che, per DD=0 si inizializzi solo y[1]
	for (i=n;i>DD;i--) y[i]=0.0f; // eventuale zero padding della fine di y
	// copio AutoCorr invertito temporalmente in y, partendo da y[DD]
	for (i=0;(((ii=DD-i)>0)&&(i<IRL));i++) if (ii<=n) y[ii]=AutoCorr[i];
	for (i=ii;i>0;i--) y[i]=0.0f; // eventuale zero padding dell'inizio di y
	
	// calcolo la autocorrelazione di AutoCorr
 // creo il progress meter
 ProgressCreate(ci,"Calculating autocorrelation...",NULL);
 // faccio la FFT diretta di AutoCorr
	realft(AutoCorr-1,ACL,1);
	// aggiorno il progress meter
	ProgressMeter(ci,2,5);
	if (*ci->lpProgressCanceled) ok=FALSE;
	// faccio il quadrato dei termini della trasformata
	if (ok) AutoCorrRealft(AutoCorr,ACL);
	// aggiorno il progress meter
	if (ok)
	{
		ProgressMeter(ci,3,5);
		if (*ci->lpProgressCanceled) ok=FALSE;
	}
 // faccio la FFT inversa di AutoCorr
	if (ok) realft(AutoCorr-1,ACL,-1);
	// a questo punto AutoCorr contiene la autocorrelazione della imp.res.
	// aggiorno il progress meter
	if (ok)
	{
		ProgressMeter(ci,5,5);
		if (*ci->lpProgressCanceled) ok=FALSE;
	}
	// distruggo il progress meter
 ProgressDestroy(ci);

 // azzero i dati di AutoCorr che dovrebbero essere = 0 in base alla teoria
 if (ok)
 {
 	// la lunghezza dei valori sensati dell'autocorrelazione è = IRL
 	
 	if (n<IRL)
			AutoCorr[n-1]=0.0f; // così l'autocorrelazione termina con uno zero
 	else
 		for (i=IRL;i<n;i++) AutoCorr[i]=0.0f;
 }

 // risolvo il problema di Toeplitz lineare
 if (ok)
 {
	 // creo il progress meter
	 ProgressCreate(ci,"Solving Toeplitz system...",NULL);
	 // calcolo il vettore incognito x
		ok=toeplzsimm(AutoCorr,x,y,n,ci);
		// compio l'ultimo, eventuale, aggiornamento del progress meter
		if (ok)
		{
			ProgressMeter(ci,1,1);
			if (*ci->lpProgressCanceled) ok=FALSE;
		}
		// distruggo il progress meter
	 ProgressDestroy(ci);
	}	
// ritorno ok
 return (ok);
}

At first is generated the vector of known terms y[], and then is computed the auto-correlation vector. The vector Autocorr [] has got a duration equal to two times the first power of 2, which is greater than the duration of selected IR by the user.
Recalling this last h(n) and h0(n) the same IR is extended with such a number of zeroes to fill Autocorr [] vector, for the properties of DFT are true the relations:

	�INCORPORA \s Equation ���	(8.1)

where ac(n) is the sequence of autocorrelation and AC(k) its transformed one. The vector of autocorrelation is then calculated doing the FTT of IR extended with zeroes, squaring the obtained DFT and doing the IFFT.
At this point is solved Toeplitz’s linear simmetrical problem. The inverse filter obtained from the system is stored in the vector x[] and the check is re-stored to XfmDo () function.
The inverse filter, converted into wholes, is stored in the Clipboard and displayed in the final report dialog box which ends the module.

Testing the module

The module has been tested determining the inverse filter of a IR and then convolving the inverted filter with the some IR. The achieved result is an impulse sequence, as we expected. The determination of an inverted filter has requested about 5 minutes processing time. The Fig. 25, 26 and 27 show respectively the IR, the determined inverted filter and their convolution.

�

Fig. 25	Impulse response of a little room.

�

Fig. 26	Inverted filter of IR of the previous figure.

�

Fig. 27	Convolution of sequences in the two previous figures.
�Flatten Spectrum

This module, having a certain signal or a IR, determines the IR of a filter which get it the spectrum flat. The amplification systems and the speakers have got usually some frequency intervals in which their feature is not flat. This module can be used to compensate the here above mentioned wants.
Using this module with Deconvolve MLS Signal module, as illustrated in the paragraph to that module dedicated, we can generate pre-convolved MLS signals with an impulse response which get flat the feature of the amplification-speakers-microphones system which we intend to use to take the measures.

Using the module

The user must load in Cool Edit the file containing the impulse response, or the signal of which he wants to get the spectrum flat. The IR can be mono or stereo. The temporal course of the loaded signal is displayed in the graphic window of the program. At this point we need to select the part of IR we are interested on (which can be the whole loaded IR or one of its portion).
� INCORPORA Word.Picture.6 ���
Then we let the computing function of acoustical parameters start, pushing the corresponding button, showed sidewise, on Cool Edit toolbar or selecting Flatten Spectrum from Transform menu.
The module displays the insert data dialog box, showed in Fig. 31, in which the user must set up the desired parameters, and then press OK button if he wishes to proceed or on the opposite Cancel.

�

Fig. 28	Insert data dialog box of Inverse Filter module.

In the dialog box are showed the summarized information above the portion of the impulse response, selected by the user (sampling frequency, number of channels, length in samples).
The meaning of the checks present in the dialog box is the following:
Filter Length: choosing, between the proposed ones of drop down list, the length which we want the filter IR has got, which causes the spectrum flat.
Windowing Function: you can improve the response of the obtained filter in frequency, multiplicating the IR by a certain type of window. Choosing the wished window between the proposed ones of drop down list: Rectangular (no one), Bartlett (triangular), Hanning, Hamming, Blackman.
Octave smoothing: if we wish to perform a smoothing of the signal spectrum logarithm before computing the IR which gets the spectrum flat, marking the check box and then setting up, in octve portions, the width of the band on which we desire to perform the smoothing.
Linear Smoothing: if we wish to perform a linear smoothing of the signal spectrum before computing the IR which gets the spectrum flat, marking the check box and setting up, in Hz the width of the band on which we intend to do the smoothing. The selection of one of the two check boxes, leaves out the other one. It is also possible to select no one type of smoothing.
Having pushed OK button, the module goes on performing the necessary calculations displaying a progress meter, which informs the user, step by step, about the percentage calculation processing and gives a valutation of the necessary time for their finishing. The progress meter let the user to suspend or give up the calculation in every moment.
Having performed the calculations, the module displays the final report dialog box, showed in Fig. 29.
�

Fig. 29	Final report dialog box of Flatten Spectrum module.

In it are displayed information on the determined filter: its length in samples, the number of channels, the sampling frequency, the time used for its determination.
The dialog box informs also that the filter has been stored with success in the Clipboard. The sequence used for the determination of the filter isn’t modified at all by the processing and remains displayed in Cool Edit graphic window.
The necessary times for the determination of the filter for the flattening of the spectrum are very small, some seconds utmost.
In case that the IR of the obtained filter is not satisfactory, we need to proceed to a new determination of the same one, changing the set up values for its duration, windowing, or smoothing.
After having smoothed the spectrum, you can colour, as much as you like, using Filter function from Transform menu.

Description of the implemented algorithm from the module

XfmSetup () function displays the insert data dialog box computing the lengths to propose in Filter Length drop down list. The set up values from the user are copied in the user structure to which refers the field hUserData of pointer ci at variables of COOLINFO type.
Through ci the set up parameters are passed to XfmDo () function. The user structure of this module, called IFS is so defined:
�typedef struct if_tag
{
	long IFLen;		// lunghezza del filtro inverso selezionata dall’utente
	char WindowFunction; // funzione di finestratura selezionata
	char SmoothType;// tipo di smoothing selezionato
	float OctaveSmoothing;	// valore impostato per lo smoothing logaritmico
	float LinearSmoothing;	// valore impostato per lo smoothing lineare
 DWORD eltime;	// tempo impiegato per la determinazione del filtro, in millisecondi
	HWND hWnd;		// dati della finestra chiamante di Cool Edit
	HINSTANCE hInst;	
} IFS;

XfmDo () function allocates all necessary data structures for the determination of the inverted filter, and then for each channel, calls the function InvertFilter () here above reported.

char InvertFilter(float huge *H, // filtro inverso
 float huge *Hs, // filtro inverso smoothed (buffer temporaneo)
			 long n, // lunghezza trasformata
			 IFS FAR *lpAmp,
			 COOLINFO far *ci)
{
	char ok=TRUE;
	long N1=n/2; // lunghezza trasformata imp. res. / 2
	long N2=lpAmp->IFLen/2; // lunghezza filtro inverso / 2
	char WinFun=lpAmp->WindowFunction;
	
	// calcolo il filtro che rende piatto lo spettro
 // creo il progress meter
 ProgressCreate(ci,"Designing spectrum flattening filter...",NULL);
 // FFT diretta di x
	realft(H-1,n,1);
	// aggiorno il progress meter
	ProgressMeter(ci,1,8);
	if (*ci->lpProgressCanceled) ok=FALSE;
	// calcolo il modulo inverso dei termini della trasformata
	// e li ordino da 0 a n/2
	if (ok) ModulusRealft(H,n);
	// aggiorno il progress meter
	if (ok)
	{
		ProgressMeter(ci,2,8);
		if (*ci->lpProgressCanceled) ok=FALSE;
	}
	// eventuale smoothing
	if (ok)
	{
		if (lpAmp->SmoothType=='O') OctaveSmoothing(H,Hs,N1,lpAmp->OctaveSmoothing);
		else if (lpAmp->SmoothType=='L') LinearSmoothing(H,Hs,N1,
(long)(lpAmp->LinearSmoothing*N1/ci->lSamprate));
	}
	// aggiorno il progress meter
	if (ok)
	{
		ProgressMeter(ci,3,8);
		if (*ci->lpProgressCanceled) ok=FALSE;
	}
	// eventuale riduzione di lunghezza
	if ((ok)&&(N1>N2)) ReduceLength(H,Hs,N1,N2);
	// aggiorno il progress meter
	if (ok)
	{
		ProgressMeter(ci,4,8);
		if (*ci->lpProgressCanceled) ok=FALSE;
	}
	// inversione modulo
	if (ok) InvertModulusRealft(H,Hs,N2);
	// aggiorno il progress meter
	if (ok)
	{
		ProgressMeter(ci,5,8);
		if (*ci->lpProgressCanceled) ok=FALSE;
	}
 // faccio la FFT inversa di H
	if (ok) realft(H-1,N2*2,-1);
	// aggiorno il progress meter
	if (ok)
	{
		ProgressMeter(ci,6,8);
		if (*ci->lpProgressCanceled) ok=FALSE;
	}
	// riordino i punti ruotandoli circolarmente di N2 campioni
	if (ok) CircularShift(H,Hs,N2);
	// aggiorno il progress meter
	if (ok)
	{
		ProgressMeter(ci,7,8);
		if (*ci->lpProgressCanceled) ok=FALSE;
	}
	// eventuale finestratura
	if ((ok)&&(WinFun!=0)) WindowFilter(H,N2*2,WinFun);
	// aggiorno il progress meter
	if (ok)
	{
		ProgressMeter(ci,8,8);
		if (*ci->lpProgressCanceled) ok=FALSE;
	}
	// distruggo il progress meter
 ProgressDestroy(ci);

 // ritorno ok
 return (ok);
}

At first is performed the FTT of IR, then calculated the module of the achieved spectrum. On the module of the spectrum is performed the eventual smoothing of the type selected by the user. The so obtained spectrum, is in its turn, the spectrum of some IR completely real values. The length of the spectrum (and therefore also the corresponding IR) is reduced to the value selected by the user. It is then performed the inversion, term by term, of the so determined spectrum. It is made the IFFT of the inverted spectrum and the so determined IR, centred at zero instant, is circulary shifted by inserting a delay equal to the half of the same IR. It is then performed the windowing, the so obtained filter is stored in a vector H [] and the control is re-stored to XfmDo () function.
The filter converted into wholes, is stored in the Clipboard and is displayed the final report dialog box which ends the module.
Both smoothing are performed in a quick and efficient way. Here above is reported OctaveSmoothing () function which performs the logarithmic smoothing.

void OctaveSmoothing(float huge *H,
					 float huge *Hs,
					 long N1,
					 float SmoothFact)
{
	long j, // contatore
		 j1,j2, // estremi banda
		 j1o,j2o, // estremi banda precedente
		 jc, // centro banda
		 totjs; // frequenze presenti in una banda
	double rad2x=sqrt(pow(2.0,SmoothFact)); // radice quadrata di 2^SmoothFact
	double invrad2x=1.0/rad2x;	 // 1 / radice quadrata di 2^SmoothFact
	double HsTot; // buffer per le sommatorie
	
	// inizializzo HsTot, Hs[0] e j1o j2o
	HsTot=(Hs[0]=H[0]);
	j1o=(j2o=0);
	// ciclo principale
	for (jc=1;jc<=N1;jc++)
	{
		j1=(long)(invrad2x*jc+0.5); // estremo inferiore banda
		j2=(long)(rad2x*jc); // estremo superiore banda
		totjs=j2-j1+1; // totale frequenze nella banda
		// elimino dal totale tutti i termini della banda precedente
		// a sinistra della banda corrente
		for (j=j1o;j<j1;j++)
		{
			HsTot-=H[j];
		}
		// inserisco nel totale tutti i termini a destra della banda precedente
		// presenti nella banda corrente		
		for (j=j2o+1;j<=j2;j++)
		{
			HsTot+=((j<=N1) ? H[j] : H[(N1<<1)-j]); // N1-(j-N1) = 2*N1-j
		}
		// calcolo il valore dell'Hs corrente
		Hs[jc]=(float)(HsTot/totjs);
		// aggiorno il valore di j1o e j2o
		j1o=j1;
		j2o=j2;
	}	
	// ricopio la risposta in frequenza smoothed da Hs a H
	for (jc=0;jc<=N1;jc++)
	{
		H[jc]=Hs[jc];
	}
}					

Testing the module

The module has been tested inverting the IR of a filter for the colouring in frequency. The Fig. 30, 31 and 32 show respectively the impulse response and the frequency analysis of the initial filter, the ones of the filter for the determined flattenning and their convolution with the corresponding frequency analysis. The spectrum of their convolution is flat, as we wished.
��

�

Fig. 30	IR and the spectrum of initial filter.

�

�

Fig. 31	IR and the spectrum of the filter for the spectrum flattening.

�

�

Fig. 32	Convolution of two IR and analysis of the result in frequency
��Subtract Convolved

This module performs one of the necessary operations for crosstalk erasing. The crosstalk is a phenomenon which happens when a pair of loudspeakers are placed in front of the listener.
The sound coming from each loudspeaker reaches both ears, so that, the right and left channels arrived mixed to the entrance of the auditory canal.

� INCORPORA Word.Picture.6 ���

Fig. 33	Diagram of the run of the signals which reach the ears through the loudspeakers.

In figure it is showed a system for the creation of a binaural signal and his hearing through loudspeakers, which is particularly sensitive to crosstalk phenomenon. In it, beside the crosstalk phenomenon, happens also that the transfer function related to the head HRTF (Head Related Transfer Function) is already included in the impulse response used for the convolution, but the signal coming from the loudspeakers, interfers again with the hearer’s head and in this way the filtering due to the head is performed twice.
For these reasons, it is necessary to use an algorithm which can subtract the head filtering included in the impulse responses. In mathematical notations the signals coming from left and right uditive canal of the hearer can be so described:

	�INCORPORA Equation ���	(10.1)

Noting that the stereo signals y1 nad yr are coming from a single entrance anechoic mono signal (x) through the convolution with two impulse responses hl and hr and passing to the frequency domain through FFT, the previous relations can be written again:
	�INCORPORA Equation ���	(10.2)

Now let’s substitute two suitable impulse responses (hl’ and hr’) to the place of the originals ones. They must be such that can let the terms between brackets be equal to the desired impulse responses hl and hr. After few passages, we have:

	�INCORPORA Equation ���	(10.3)

or passing to the time domain:

	�INCORPORA Equation ���	(10.4)

Where inv() indicates the inverted impulse response, determined through Inverse Filter module. This simple relation permits to compute the wished impulse responses hl’ and hr’.
For their determination is necessary to measure the four impulse responses related to the loudspeakers and to hearer head.
Doing that way, it is removed not only the crosstalk but every other undesired filtering due to the response of loudspeakers in frequency. Beside that, it is eliminated also the transfer function related to the head, avoiding the double filtering previously analyzed.
In theory this post-processing should also eliminate the reflections of the hearing environment, and in this way we shouldn’t need to treat acoustic the room. Moreover, in case of reverbering environments, the calculation of the inverted impulse response present in the (10.4) formula is very expensive in terms of elaboration time and it doesn’t reach always satisfactory results.
There are two solutions to solve this restriction: if the hearing can’t be placed in a particularly treated room, we arrange to take out only the anechoic part of the four experimental impulse responses. In this way the digital compensation of crosstalk doesn’t consider the presence of the environment reflections, but they are present again, and can also cause spectrum distorsions and a certain quantity of crosstalk.
Alternatively, you can use a little anechoic room: even if not perfectly anechoic (particularly at low frequencies), is enough to shorten the most significant part of measured IR and so to simplify the computation of the inverted response. In this case the four impulse responses are not cut off but their length is reduced applying a semigaussian window to remove the noise of the reverberation queue.
This module performs only in a passage the convolution and the subtraction present in the relations (10.4).

Using the module

The module works on two stereo sequences, one stored in the Clipboard and the other one displayed in the graphic window. It convolves their corresponding channels and then subtracts one of the result channel from the other one.
� INCORPORA PaintShopPro ���
Having stored in the Clipboard and loaded in the graphic window the files subjected to the operation, you let start the function, pushing the corresponding button, showed sidewise, on Cool Edit toolbar, or selecting Subtract Convolved from Transform menu.
The module displays the insert data dialog box, showed in Fig. 34, in which the user must set up the wished parameters and then press OK button if he likes proceeding or Cancel on the opposite.

�

Fig. 34	Insert data dialog box of Subtract Convolved module.

In the dialog box are showed the summarized information about the impulse response present in the Clipboard and above the audio signal to convolve with it (frequency of sampling, number of channels, length in sample). The dialog box also shows in samples the dimension of the FTT used by algorithm which performs the linear convolution in the dominion of the frequency.
Such dimension is automatically chosen by the module so that it can minimize the number of the necessary operations for the execution of the same algorithm.
The meaning of the checks present in the dialog box is the following:
Left-Right, store in Left: selecting this radio button if, having performed the convolution we wish to subtract to the left channel of the result of the same convolution, the right one and to store the sequence product of the subtraction in the left channel, resetting the right channel.
Right-Left, store in Right: selecting this radio button if, having performed the convolution, we wish to subtract to the right channel of the result of the same convolution, the left one and to store the sequence product of the subtraction in the right channel, resetting the left channel.
Remove DC component: marking the check box if we want to remove the eventual continuous component present in the signal product of the convolution.

Having pressed OK button, the module goes on executing the necessary calculations, displaying a progress meter which informs, step by step, the user about the percentage calculation process and gives a valutation of the necessary time for their finishing. The progress meter permits moreover the user to suspend or give up the calculations in every moment. If, owing to the interruption, the data displayed in the graphic window are troubled, we are able to recover the original data through Undo function from Edit menu.
Having performed the calculations, the module displays the final report dialog box, showed in Fig. 35.

�

Fig. 35	Final report dialog box of Subtract Convolved module.
In it are showed summarized information about the impulse response and about the audio signal which have been convolved. The dialog box also shows the dimension of FTT in samples used by algorithm and the complete time for the convolution as well as the value as regards to the obtained final sequence has been re-graduated.
Having closed the dialog box, the present data of audio signal in the graphic window are replaced by the ones of the signal product from the convolution and subtraction.

How to eliminate the crosstalk using Subtract Convolved module

To determine the impulse responses which eliminate the crosstalk only in a passage, is an operation that requests the contemporany management of 6 IR, while Cool Edit can comply with 4 IR contemporany utmost (a stereo signal in the Clipboard and another one in the graphic window).
Moreover the operation can also be performed by Cool Edit with the active presence of the user.
To eliminate the crosstalk using this module, is necessary to proceed in the following way:
To create 3 stereo files following the indications of the here above table:

Nome file�Canale sinistro�Canale destro��hlllr�h�LL�hLR��hrrrl�hRR�hRL��h�hL�hR��
Tab. 3	Necessary files for crosstalk erasing using Subtract Convolved module.

hlllr must be generated using the module Deconvolve MLS Signal, which displays the upmost value, which we will call XM1, to which the deconvolved signal has been standardized. hrrrl must be generated likewise hlllr and is re-graduated as regards to XM2.
The user must attend to note the upmost values XM1 and XM2 at the moment of the deconvolution. At this point we need to let hlllr and hrrrl be standardized as regards to the same value. At this aim if, for instance, (XM1>XM2), I standardize hrrrl to the upmost value XM2/XM1*100, using the function Normalize of Transform menu (selecting the option Left and Right Equally).
We calculate then the two parts between brackets of h’L and h’R using the function Subtract Convolved. To determine the first part between brackets of h’L, convolve hrrrl and h, choosing the option Left-Right. To determine the first part between brackets of h’R, convolve hlllr and h’ (after having exchanged between them the channels of this last by the function Channel Mixer of Transform menu), choosing the option Left-Right.
Standardize the obtained sequences so that both results are standardized as regards to the same Xmax and then create a stereo file with the left channel equal to the result of the second one.
Determine the term to invert, common to h’L and c by convolving hlllr and hrrrl through the option Left-Right and do the inverse of the mono signal obtained from the only left channel of the result using Inverse Filter.
Convolve the stereo file previously determined through the result (mono) of the inversion. All that we obtain is the impulse response that we must convolve with x to eliminate the crosstalk. It has got the left channel equal to h’L, and the right one equal to h’R.
If the original signal is stereophonic (instead of being anechoic auralised signal) it is just the same process but with the two channels of stereo signal, yL and yR, in place of hL and hR. All that we achieve is not an impulse response but is directly the signal y’L and y’R by which to drive the loudspeakers.

Description of the implemented algorithm from the module

The implemented algorithm from the module is similar at all to the implemented one from the module Convolve with Clipboard, to which description here above we recall. The only difference is that this module works only on two pairs of stereo sequences, of which to convolve always the corresponding channel, and at the end, before converting the float into int, subtracts a channel from the other one, storing the result in one of the two channels and resetting the other one.
The subtraction is performed before transforming the float into int, through rescaling, then it doesn’t introduce any noise (or additional noise) in the signal. It is performed before by the function FloatToIntZeroed () and the instructions that can perform it are here above mentioned together with the same function FloatToIntZeroed ().

// faccio la sottrazione tra i canali in modo
// opportuno in funzione di ConvoType
switch(ConvoType)
{
	case 'L':
		for (i=0l;i<lmnp1;i++)
			Rebuf[i]=LeB[nm1+i]-RiB[nm1+i];
		break;
	case 'R':
		for (i=0l;i<lmnp1;i++)
			Rebuf[i]=RiB[nm1+i]-LeB[nm1+i];
		break;
}
...
void FloatToIntZeroed(float huge *FloatBuf, // buffer per i float da convertire
				int huge *IntBuf, // buffer per gli int
				float Xmax, // valore massimo dei campioni
				long TC, // numero campioni da convertire
				char ConvoType) // tipo di sottrazione compiuta
				
{
	long offset,ii=0;
	float sample;
	float Xconv=32767.0F/Xmax; // valore con cui riscalare
	
	for(offset=0;offset<TC;offset++)
	{
		// memorizzo il campione float corrente
		sample=FloatBuf[offset];
		// se R metto a zero il canale sinistro
		if (ConvoType=='R') IntBuf[ii++]=0;
		// converto e copio: nel canale sinistro se L, nel destro se R
		if (sample>=0.0f)
		{
			IntBuf[ii++]=(short)((sample*Xconv)+0.5F);
		}
		else
		{
	 		IntBuf[ii++]=(short)((sample*Xconv)-0.5F);
		}
		// se L metto a zero il canale destro
		if (ConvoType=='L') IntBuf[ii++]=0;
	}
}				

Testing the module

The module has been tested eliminating the crosstalk of a system for the hearing of binaural signals through loudspeakers based on an anechoic room in miniature. A musical anechoic signal and mono-phonic has been convolved with binaural modified impulse responses so that we can eliminate the crosstalk and then reproduced through loudspeakers, comparing the achieved result with the hearing of the binauralised signal in headphone.
The impulse responses hLL, hLR, hRL and hRR necessary for the computation, vary with the position and dimension of the hearer inside the box. For this reason, before every hearing-test, we take measures of the four impulse responses through MLS technique, while the hearer is already setting and wears a headphone for binaural recordings and reproductions (Sony DRW 70-C or Sennheiser MKE 2002).
Such impulse responses are employed to produce the two impulse responses with wich is convolved the anechoic signal. The music is so convolved in a different way for every subject, even if the music set up for a subject, can, in first approximation, be well also for other hearers.
The experience of hearing through loudspeakers, by the elimination of crosstalk, is revealed, as we expected, very similar to the hearing in headphone.
�INDEX

0.	INTRODUCTION	p. 1

1.	IMPORTING FILTER FOR AUDIO FILES IN THE FORMAT MLSSA (.TIM)	p. 3

1.1	The MLSSA format (.TIM)	p. 3
1.2	Reading and writing of audio files in MLSSA format (.TIM)	p. 6
1.3	Using the filter	p. 8
1.4	Testing the filter	p. 9

2.	CONVOLVE WITH CLIPBOARD	p. 11

2.1	Using the module	p. 11
2.2	Description of the implemented algorithm from the module	p. 14
2.3	Testing the module	p. 19

3	GENERATE MLS SIGNAL	p. 23

3.1	Using the module	p. 25
3.2	Measure of the impulse response through MLS technique	p. 25
3.3	Description of the implemented algorithm from the module	p. 26
3.4	Testing the module	p. 27
�4	DECONVOLVE MLS SIGNAL	p. 29

4.1	Using the module	p. 29
4.2	Generation of a MLS convolved with the impulse response
	using the module Deconvolve MLS Signal	p. 31
4.3	Description of the implemented algorithm from the module	p. 32
4.4	Testing the module	p. 34

5	GENERATE IRS SIGNAL	p. 37

5.1	Using the module	p. 38
5.2	Description of the implemented algorithm from the module	p. 39
5.3	Testing the module	p. 39

6	DECONVOLVE IRS SIGNAL	p. 41

6.1	Using the module	p. 41
6.2	Description of the implemented algorithm from the module	p. 43
6.3	Testing the module	p. 47

7	ACOUSTICAL PARAMETERS	p. 49

7.1	Using the module	p. 50
7.2	Description of the implemented algorithm from the module	p. 52
7.3	Testing the module	p. 57

8	INVERSE FILTER	p. 59

8.1	Using the module	p. 59
8.2	Description of the implemented algotithm from the module	p. 61
8.3	Testing the module	p. 63
�9	FLATTEN SPECTRUM	p. 65

9.1	Using the module	p. 65
9.2	Description of the implemented algorithm from the module	p. 67
9.3	Testing the module	p. 70

10	SUBTRACT CONVOLVED	p. 75

10.1	Using the module	p. 77
10.2	How to eliminate the crosstalk using the module subtract convolve	p. 79
10.3	Description of the implemented algorithm from the module	p. 80
10.4	Testing the module	p. 81
�PAGINA �

�PAGINA �

�PAGINA �1�

Cap. 1 Importing filter for audio files in MLSSA format (.TIM)

�PAGINA �81�

Cap. 2 Convolve with Clipboard

Cap. 3 Generate MLS Signal

Cap. 4 Deconvolve MLS Signal

Cap. 5 Generate IRS Signal

Cap. 6 Deconvolve IRS Signal

Cap. 8 Inverse Filter

Cap. 9 Flatten Spectrum

Cap. 10 Subtract Convolved

�PAGINA �III�

